³í´Ü

°íÁؼ®
ºñÁ¤Çü ´Ü¹éÁú¿¡ ÀÇÇÑ »ýü °íºÐÀÚ °£ »óÈ£ÀÛ¿ëÀÇ Á¶Àý
°íÁؼ® ¼­¿ï´ëÇб³ »ý¸í°úÇкΠ¸ÞÀÏ junseockkoh@snu.ac.kr

Introduction

ºñÁ¤Çü ´Ü¹éÁú ȤÀº ´Ü¹éÁú ºÎºÐ(intrinsically disordered proteins (IDPs) or regions(IDRs))¿¡´Â ÀüÇüÀûÀÎ ±¸Á¶ µµ¸ÞÀÎ(structured domain)¿¡ ºñÇÏ¿© ¼Ò¼ö¼º(hydrophobic: Trp, Tyr, Ile, Phe, Val, Leu) ¾Æ¹Ì³ë»êÀÌ ³·Àº ºñÀ²·Î Á¸ÀçÇÑ´Ù(º» ³í´Ü¿¡¼­´Â IDP, IDRÀ» ¸ðµÎ IDR·Î ÃÑĪÇÑ´Ù) [1]. Protein foldingÀÇ ÁÖ¿ä driving force Áß Çϳª´Â ¼Ò¼ö¼º ¾Æ¹Ì³ë»êµéÀÌ solvent·ÎºÎÅÍ ºÐ¸®µÇ¾î ÀÚ¹ßÀûÀ¸·Î ÀÀÁýµÇ´Â hydrophobic effectÀ̹ǷΠIDRÀº Á¤ÇüÈ­µÈ ¾ÈÁ¤ÀûÀÎ 3Â÷¿ø ±¸Á¶¸¦ ÃëÇÏÁö ¾Ê´Â °æÇâÀ» º¸Àδ٠[2]. ´ë½Å, ³ôÀº ºñÀ²ÀÇ Ä£¼ö¼º(hydrophilic) ¾Æ¹Ì³ë»êµéÀ» ÅëÇØ solvent¿Í È£ÀÇÀûÀ¸·Î »óÈ£ÀÛ¿ë(hydration)ÇÏ¿© ¼ö¸¹Àº ÇüÅÂÀÇ Ç®¸° ±¸Á¶·Î Á¸ÀçÇÑ´Ù. ÀÌ·¯ÇÑ ensemble³» ´Ù¾çÇÑ Ç®¸° »óŵéÀº À¯»çÇÑ free energy¸¦ °®°í ÀÖÀ¸¸ç, ÀÌµé °£ Á¸ÀçÇÏ´Â activation energy barrier°¡ ³·¾Æ, ¿Ï¸¸ÇÑ energy landscapeÀ» Çü¼ºÇÑ´Ù [3, 4]. µû¶ó¼­ Ç®¸° »óÅÂµé °£ »óÈ£ÀüȯÀÌ ÀÚ¹ßÀûÀÌ¸ç ºü¸£°Ô ÀϾ´Ù.
1950-60³â´ë ÀÌ·ç¾îÁø myoglobin, hemoglobinÀÇ ±¸Á¶ ±Ô¸í°ú RNase unfolding-refolding ½ÇÇèÀ» ÅëÇØ, ´Ü¹éÁúÀÇ ±â´ÉÀº À̵éÀÇ Á¤ÇüÈ­µÈ 3Â÷¿ø ±¸Á¶¿¡ ÀÇÇØ °áÁ¤µÇ¸ç, ±¸Á¶¸¦ °áÁ¤ÇÏ´Â ÁÖ¿ä Á¤º¸´Â amino acid sequence¿¡ ³»ÀçµÇ¾î ÀÖ´Ù´Â, (sequence)-structure-function Æз¯´ÙÀÓÀÌ È®¸³ µÇ¾ú´Ù [5-8]. ÀÌ·¯ÇÑ °üÁ¡¿¡¼­ IDRÀº ±¸Á¶ µµ¸ÞÀÎ °£ ¼öµ¿Àû linker ȤÀº Ưº°ÇÑ ±â´ÉÀÌ ¾ø´Â ´Ü¹éÁú ¸»´Ü(terminal tail)À¸·Î ÀÎ½ÄµÇ¾î ¿Ô´Ù. µû¶ó¼­, ±¸Á¶ »ý¹°ÇÐ ¿¬±¸¿¡¼­ IDRÀº ÁÖ¿ä ¿¬±¸ ´ë»óÀÌ ¾Æ´Ï¾úÀ¸¸ç, ƯÈ÷ x-ray crystallography ȤÀº cryo-EM ¿¬±¸¿¡¼­´Â ÇØ»óµµ Çâ»óÀ» À§ÇØ ´Ü¹éÁú ³» IDRÀº ¸¹Àº °æ¿ì¿¡ Á¦¿Ü(truncation)µÇ¾î¿Ô´Ù. ±×·¯³ª 1990³â´ë Á߹ݺÎÅÍ È°¹ßÇÏ°Ô ÀÌ·ç¾îÁø »ý¹°Á¤º¸ÇÐ ¿¬±¸µéÀº ÁøÇÙ ¼¼Æ÷ proteomeÀÇ ¾à 60% °¡·®ÀÌ 30°³ ÀÌ»óÀÇ ¾Æ¹Ì³ë»êÀ» Æ÷ÇÔÇÏ´Â ±ä (x-ray °áÁ¤ ±¸Á¶¿¡¼­ ÀϹÝÀûÀ¸·Î °üÂûµÇ´Â ±¸Á¶ µµ¸ÞÀÎ °£ linkerº¸´Ù ±ä) IDRÀ» Æ÷ÇÔÇÏ°í ÀÖÀ½À» Á¦½ÃÇÏ¿´°í [9, 10], ƯÈ÷ signaling, transcription, transport¿Í °°ÀÌ ¿ªµ¿ÀûÀÎ »ýü Çö»óÀ̳ª ¾Ï¿¡ °ü¿©ÇÏ´Â ´Ü¹éÁúµé¿¡ ÁÖ·Î ±ä IDRµéÀÌ ºÐÆ÷ÇÏ°í ÀÖÀ½À» ¿¹ÃøÇÏ¿´´Ù [11]. ºñ½ÁÇÑ ½Ã±â¿¡ ½ÃÀÛµÈ NMRÀ» ÀÌ¿ëÇÑ ¿¬±¸µéÀº signaling¿¡ °ü¿©Çϴ ƯÁ¤ ´Ü¹éÁú ȤÀº ´Ü¹éÁú Áö¿ªµéÀÌ native condition¿¡¼­µµ ½ÇÁ¦·Î Ç®¸° ÇüÅÂ¿Í ¿ÂÀüÇÑ ±â´É¼ºÀ» ÃëÇÏ°í ÀÖ´Ù´Â Áõ°Å¸¦ Á¦½ÃÇÏ¿´´Ù [12-14]. ÀÌÈÄ ºñÁ¤Çü ´Ü¹éÁúÀÇ Á¤Á¦ ¹æ¹ý, À̵éÀÇ ±¸Á¶ ¹× ±â´É ºÐ¼®¿¡ ÇÊ¿äÇÑ »ý¹°¹°¸®ÇÐÀû ¹æ¹ýÀÌ °³¹ß, ¹ßÀüµÇ¾î IDR ÀÚü ÇüÅ¿¡ ´ëÇÑ ¿¬±¸, ´Ù¸¥ »ýü ºÐÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ¿¬±¸, ±×¸®°í ÃÖ±Ù¿¡´Â ´õ ³ª¾Æ°¡ in vivo ¿¡¼­ À̵éÀÌ ÀÌ·ç´Â membrane-less organelle¿¡ ´ëÇÑ ¿¬±¸°¡ È°¹ßÇÏ°Ô ÀÌ·ç¾îÁüÀ¸·Î½á, IDRÀÇ ±â´É¼º ¹× »ý¹°ÇÐÀû Á߿伺ÀÌ È®¸³µÇ¾ú°í, sequence-disorder-functionÀ̶ó´Â ´Ü¹éÁú ±â´É¿¡ °üÇÑ È®ÀåµÈ Æз¯´ÙÀÓÀÌ Á¦½ÃµÇ±â¿¡ À̸£·¶´Ù [15, 16]. º» ³í´Ü¿¡¼­´Â IDR°ú »ýü °íºÐÀÚ °£ »óÈ£ÀÛ¿ë, ƯÈ÷ ordered domain°ú´Â Â÷º°È­µÇ´Â, ƯÀÌÇÑ »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ¿¬±¸¸¦ ¼Ò°³ÇÏ°í, ÀÌ·¯ÇÑ »óÈ£ÀÛ¿ëµéÀ» ÅëÇØ ¾î¶»°Ô ´Ù¾çÇÑ »ý¹°ÇÐÀû Çö»óµéÀÌ Á¶ÀýµÇ´ÂÁö¸¦ ³íÀÇÇÏ°íÀÚ ÇÑ´Ù.

1. Coupled folding and binding (Disorder-to-order transition)

IDR¿¡ Á¸ÀçÇϴ ƯÁ¤ motifµéÀº Ç¥Àû ´Ü¹éÁú ȤÀº ÇÙ»ê°ú °áÇÕÇϸ鼭 ¥á-helix, ¥â-strand¿Í °°Àº 2Â÷ ±¸Á¶¸¦ Çü¼ºÇÑ´Ù [17]. ´ëÇ¥ÀûÀÎ ¿¹·Î, CREB(c-AMP responsive element binding protein)ÀÇ pKID(phosphorylated kinase-inducible domain)´Â ÀÚüÀûÀ¸·Î´Â Ç®¸° ÇüÅ·ΠÁ¸ÀçÇÏÁö¸¸ CBP(CREB binding protein)ÀÇ KIX(KID interacting domain)¿Í »óÈ£ÀÛ¿ë ½Ã helix ±¸Á¶·Î folding µÈ´Ù [18]. Transcription factor DNA binding domainÀÇ °æ¿ìµµ ƯÀÌÀû DNA ¼­¿­ (specific DNA sequence)¿¡ °áÇÕ ½Ã µ¿¹ÝµÇ´Â foldingÀÌ X-ray, NMR ±¸Á¶¿¡¼­ ´Ù¼ö °üÂûµÇ¾úÀ¸¸ç, À̵鿡 ´ëÇÑ ¿­¿ªÇÐÀû ½ÇÇè ¹× ºÐ¼®¿¡¼­µµ coupled folding¿¡ °ü¿©ÇÏ´Â ¾Æ¹Ì³ë»ê °³¼ö°¡ À¯»çÇÏ°Ô µµÃâµÇ¾ú´Ù [19-21]. Coupled foldingÀÇ ¿ªÇÒ¿¡ ´ëÇÑ °¡¼³·Î´Â, ù°, IDR°ú Ç¥Àû »ýü °íºÐÀÚ °£ °áÇÕÀÚ¸®ÀÇ ±¸Á¶Àû »óº¸¼ºÀÇ È®º¸, µÑ°, binding entropy °¨¼Ò¸¦ ÅëÇÑ °áÇÕ·Â(binding constant)ÀÇ ¹Ì¼¼Á¶Á¤ÀÌ Á¦½ÃµÇ¾ú´Ù [15, 17]. ƯÈ÷, °áÇÕ·ÂÀÇ ¹Ì¼¼Á¶Á¤Àº signaling/regulatory pathway¿¡ °ü·ÃµÈ »ýü ºÐÀÚ °£ »óÈ£ÀÛ¿ëÀÇ Æ¯À̼º(specificity) È®º¸¸¦ À§ÇÑ °­ÇÑ °áÇշ°ú À̵éÀÇ °¡¿ªÀû Çظ® (reversible dissociation)¿¡ À¯¸®ÇÑ ¾àÇÑ °áÇÕ·Â »çÀÌÀÇ ±ÕÇüÁ¡À» ÀÌ·ç´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ÃßÃøµÈ´Ù.
IDR¿¡ Á¸ÀçÇÏ´Â °áÇÕ motifµé Áß ÀϺδ ºñ°áÇÕ »óÅ¿¡¼­µµ 2Â÷ ±¸Á¶¸¦ ÀϽÃÀûÀ¸·Î Çü¼ºÇϴµ¥, Á¾¾ç ¾ïÁ¦ ÀÎÀÚ p53ÀÇ amino terminal transactivation domain(N-terminal TAD)¿¡ Á¸ÀçÇÏ´Â IDRÀº ÀÌ·¯ÇÑ pre-formed structureÀÇ ±â´É¼º¿¡ ´ëÇÑ ´Ü¼­¸¦ Á¦°øÇÑ´Ù [22, 23]. ÀÌ IDRÀº ºñ°áÇÕ »óÅ¿¡¼­ helix ±¸Á¶¸¦ ÃëÇϴµ¥, ±¸Á¶°¡ Çü¼ºµÇ´Â ºóµµ´Â ÀÌ ±¸¿ªÀÇ º¸Á¸µÈ prolineµé¿¡ ÀÇÇؼ­ °áÁ¤µÈ´Ù. ƯÁ¤ proline(Pro27)À» alanineÀ¸·Î ġȯÇÏ°Ô µÇ¸é, helix Çü¼º È®·üÀÌ Áõ°¡ÇÏ¿© E3 ubiquitin ligase MDM2¿¡ ´ëÇÑ °áÇÕ·ÂÀ» °­È­½ÃÅ°°í, ÀÌ´Â p53 signaling pathway¿¡ °ü¿©ÇÏ´Â ´Ü¹éÁú-´Ü¹éÁú »óÈ£ÀÛ¿ëµé °£ ±ÕÇüÀ» ¹«³Ê¶ß¸®´Â °á°ú¸¦ ÃÊ·¡ÇÑ´Ù [23]. ¹Ý¸é¿¡, PUMA(p53 upregulated modulator of apoptosis)ÀÇ IDRÀº pre-formed structureÀÇ ÀÎÀ§ÀûÀÎ µµÀÔ¿¡µµ MCL1(induced myeloid leukemia cell differentiation protein)¿¡ ´ëÇÑ °áÇÕ·ÂÀÌ °­È­µÇÁö ¾Ê´Â´Ù [24]. ÀÌ·¯ÇÑ ´ëÁ¶ÀûÀÎ °á°úµéÀº ½Ã½ºÅÛ°ú ȯ°æ¿¡ µû¶ó¼­ pre-formed structureÀÇ ¿ªÇÒ°ú Á߿伺ÀÌ °áÁ¤µÉ ¼ö ÀÖÀ½À» Á¦½ÃÇÑ´Ù. ȤÀº, ÃøÁ¤ ±â¼úÀÇ ÇÑ°è°¡ Ç¥¸éÀûÀ¸·Î ´ëÁ¶µÇ´Â °á°úµéÀÇ ¿øÀÎÀÏ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, pre-formed structure¸¦ ¹¦»çÇϴµ¥ °¡Àå °£´ÜÇÑ two-state ÆòÇü ¸ðµ¨À» ÀÌ¿ëÇϸé, ½ÇÇèÀûÀ¸·Î °üÂûµÇ´Â °áÇÕ·ÂÀº Kobserved=KbindingKc/(1+Kc)·Î ³ªÅ¸³¾ ¼ö Àִµ¥, Kc´Â disordered state¿Í pre-formed structure°£ ÆòÇü»ó¼öÀ̸ç, Kc/(1+Kc)Àº pre-formed structureÀÇ ºñÀ²ÀÌ´Ù. µû¶ó¼­, Kc/(1+Kc)ÀÇ º¯È­·®ÀÌ Å©Áö ¾ÊÀ» °æ¿ì ȤÀº ½ÇÇèÀûÀ¸·Î °¨Áö °¡´ÉÇÑ ¹üÀ§¸¦ ¹þ¾î³­ °æ¿ì´Â °áÇÕ·Â º¯È­ÀÇ Á¤È®ÇÑ Á¤·®ÀÌ °¡´ÉÇÏÁö ¾ÊÀ» ¼öµµ ÀÖ´Ù.

2. Dynamic binding (Fuzzy complex)

ÀϺΠIDRµéÀº ºñ°áÇÕ »óÅÂÀÇ À¯µ¿¼º/¿ªµ¿¼ºÀ» Ç¥Àû »ýü °íºÐÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ë ½Ã¿¡µµ À¯ÁöÇÏ¸ç ´Ù¾çÇÑ ÇüÅÂÀÇ Ç®¸° ±¸Á¶ºÎÅÍ ÀüÇüÀûÀÎ 2Â÷ ±¸Á¶±îÁö ÃëÇÒ ¼ö ÀÖ´Â ºñ±ÕÁúÀûÀÎ º¹ÇÕü(fuzzy complex)¸¦ Çü¼ºÇÑ´Ù [25]. °áÇÕ »óÅ¿¡¼­µµ À¯ÁöµÇ´Â ¿ªµ¿¼ºÀ¸·Î ÀÎÇØ À̵éÀº µÎ °¡Áö ÀÌ»óÀÇ Ç¥Àû »ýü °íºÐÀÚ¿Í °¢±â ´Ù¸¥ ÇüŸ¦ ÃëÇÏ¸ç »óÈ£ÀÛ¿ë ÇÒ ¼ö ÀÖ´Â ÀáÀ缺À» °®°í ÀÖ´Ù(adaptive/promiscuous binding) [26]. ¶ÇÇÑ, °áÇÕ motif¸¦ ±¸¼ºÇÏ´Â ÀϺΠÁö¿ªµéÀº ±Ø´ÜÀûÀÎ ¿ªµ¿¼ºÀ» º¸ÀÌ¸ç ¼ø°£ÀûÀ¸·Î Ç¥Àû ´Ü¹éÁú·ÎºÎÅÍ Çظ®µÉ ¼ö ÀÖ´Â, ¼ÒÀ§ "breathing(on-off) motion"À» º¸À̴µ¥, ÀÌ´Â ´Ù¸¥ Ç¥Àû ´Ü¹éÁúµé°ú ´ëü °áÇÕÇÒ ¼ö ÀÖ´Â ±âȸ°¡ µÇ±âµµ ÇÑ´Ù. ÀÌ·¯ÇÑ Æ¯Â¡µé·Î ÀÎÇÏ¿© fuzzy complexµéÀº À̵éÀÌ °ü¿©ÇÏ´Â signaling pathwayÀÇ Á¾·ù, ¼¼Æ÷ ³» À§Ä¡ µî ȯ°æ¿¡ µû¶ó¼­ ´Ù¾çÇÑ ±â´ÉÀ» ÇÒ ¼ö ÀÖ´Ù.
¼¼Æ÷ÁÖ±âÀÇ Á¶Àý, ±¸Ã¼ÀûÀ¸·Î G1¿¡¼­ S±â·ÎÀÇ Àüȯ¿¡ °ü¿©ÇÏ´Â Cdk2/cyclin A complex¿Í p27ÀÇ KID °£ »óÈ£ÀÛ¿ëÀÌ dynamic bindingÀÇ ´ëÇ¥ÀûÀÎ ¿¹½Ã¶ó ÇÒ ¼ö ÀÖ´Ù (±×¸² 1) [27, 28]. ÀÌµé °£ »óÈ£ÀÛ¿ëÀÇ À§Ä¡´Â p27 KIDÀÇ D1, D2·Î ¸íĪ µÈ IDRµé¿¡ ÀÇÇؼ­ ¾çºÐµÇ¾î ÀÖ´Ù. D1Àº cyclin A¿Í »óÈ£ÀÛ¿ëÇÏ¿© Cdk2/cyclin A complexÀÇ ±âÁú °áÇÕÀ» ÀúÇØÇϸç, D2´Â tyrosine(Y88)À» Cdk2ÀÇ active site¿¡ À§Ä¡½ÃÅ´À¸·Î½á kinase È°¼ºÀ» Á¦°ÅÇÑ´Ù. µÎ °áÇÕ ÀÛ¿ë ¸ðµÎ coupled foldingÀ» Æ÷ÇÔÇÏÁö¸¸, D2´Â °áÇÕ »óÅ¿¡¼­µµ ºÎºÐÀûÀÎ ¿ªµ¿¼ºÀÌ À¯ÁöµÇ¾î, Y88ÀÌ Æ÷ÇÔµÈ ÂªÀº ±¸¿ªÀÌ ¼ø°£ÀûÀ¸·Î Cdk2ÀÇ active site·ÎºÎÅÍ ºÐ¸®µÇ´Â breathing motionÀ» º¸ÀδÙ. ÀϽÃÀûÀ¸·Î ºÐ¸®µÇ¾î ¿ÜºÎ¿¡ ³ëÃâµÈ Y88Àº nonreceptor tyrosine kinaseÀÎ BCR-ABL¿¡ ÀÇÇÏ¿© ÀÎÁö, ÀλêÈ­ µÇ°í, ´õ ÀÌ»ó active site¸¦ Â÷´ÜÇÒ ¼ö ¾ø°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ Cdk2ÀÇ kinase È°¼ºµµ°¡ ºÎºÐÀûÀ¸·Î ȸº¹µÇ°í, D2ÀÇ C-terminus¿¡ Á¸ÀçÇÏ´Â threonine(T187)À» ÀλêÈ­ ÇÏ°Ô µÇ´Âµ¥, À̶§ D2ÀÇ À¯µ¿¼ºÀ¸·Î ÀÎÇØ T187°ú Cdk2ÀÇ active site °£ Á¢±Ù¼ºÀÌ È®º¸µÈ´Ù. ÀλêÈ­ µÈ T187·Î E3 ubiquitin ligase SCFSkp2°¡ ¸ðÁýµÇ¾î ±Ù¹æÀÇ lysineµéÀÌ polyubiquitinationµÇ°í, ÀÌ´Â ÃÖÁ¾ÀûÀ¸·Î 26S proteasome¿¡ ÀÇÇÑ p27ÀÇ ºÐÇØ ±×¸®°í Cdk2/cyclin A complexÀÇ È°¼ºÈ­ ¹× G1¿¡¼­ S±â·ÎÀÇ ÀüȯÀÌ ÀÌ·ç¾îÁø´Ù.

±×¸² 1. Ckd2/cyclin A¿Í p27-KIDÀÇ »óÈ£ÀÛ¿ë ¹× p27-KIDÀÇ ºÐÇØ.
±×¸² 1. Ckd2/cyclin A¿Í p27-KIDÀÇ »óÈ£ÀÛ¿ë ¹× p27-KIDÀÇ ºÐÇØ.

Cystic fibrosis conductance transmembrane regulator (CFTR)ÀÇ regulatory (R) Áö¿ª ¿ª½Ã ´Ù¾çÇÑ Ç¥Àû ´Ü¹éÁúµé°ú »óÈ£ÀÛ¿ëÇÏ¿© CFTRÀÇ È°¼ºµµ Á¶Àý ¹× ¼¼Æ÷¸·À¸·ÎÀÇ À̵¿¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù [29, 30]. RÁö¿ªÀº CFTRÀÇ NBD(nucleotide binding domain)¿Í »óÈ£ÀÛ¿ëÇÏ¿© helix formÀ¸·Î foldingµÇ´Âµ¥, ÀÌ´Â NBDµé °£ dimerization ¹× channelÀÇ ¿­¸²À» ÀúÇØÇÑ´Ù. ±×·¯³ª RÁö¿ªÀÇ Æ¯Á¤ ¾Æ¹Ì³ë»êµéÀÌ ÀλêÈ­ µÇ¸é, helixÀÇ ¾ÈÁ¤¼ºÀÌ °¨¼ÒÇÏ°Ô µÇ°í, RÁö¿ªÀº NBD´ë½Å CTFRÀÇ C-terminus ȤÀº chloride/bicarbonate exchangerÀÎ SLC26A3ÀÇ STAS domain°ú Ç®¸° ÇüÅ·Π»óÈ£ÀÛ¿ëÇÑ´Ù. ÀÌ·Î ÀÎÇØ NBD °£ dimerization, ATP hydrolysis ¹× channelÀÇ ¿­¸²ÀÌ ÀÌ·ç¾îÁö°Ô µÇ°í, CFTR°ú SLC26A3´Â ¹°¸®ÀûÀ¸·Î ÀÎÁ¢ÇÏ°Ô µÇ¾î »óÈ£ È°¼ºÈ­µÈ´Ù. ÀλêÈ­ µÈ RÁö¿ªÀº 14-3-3 ´Ü¹éÁú°úµµ »óÈ£ÀÛ¿ëÇϴµ¥, ÀÌ´Â CFTRÀÌ ¼ÒÆ÷ü·ÎºÎÅÍ Á¤»óÀûÀÎ ¼¼Æ÷ ³» À̵¿À» Çϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù.

3. Assembly of higher-order macromolecular complexes (IDR-mediated allosteric coupling)

°°Àº ¾Æ¹Ì³ë»ê °³¼ö¸¦ °®°í ÀÖ´Â IDR°ú ordered globular domainÀ» ºñ±³Çϸé, solvent¿¡ ³ëÃâµÇ¾î ´Ù¸¥ Ç¥Àû »ýü °íºÐÀÚµé°ú »óÈ£ÀÛ¿ëÇÒ ¼ö Àִ ǥ¸éÀûÀÇ ºñÀ²ÀÌ ÀÚ¿¬È÷ IDR¿¡¼­ ¿ùµîÈ÷ ³ô°Ô ³ªÅ¸³­´Ù [31]. ¶ÇÇÑ, ordered domain¿¡ Á¸ÀçÇÏ´Â °áÇÕ ÀÚ¸®´Â 1Â÷ ±¸Á¶»ó ´Ù¾çÇÑ À§Ä¡¿¡ Àִ ƯÁ¤ ¾Æ¹Ì³ë»êµéÀÌ 3Â÷¿ø ±¸Á¶¿¡ ÀÇÇØ ÀÎÁ¢ÇÔÀ¸·Î½á Çü¼ºµÇ´Âµ¥ ¹ÝÇØ IDR¿¡ Á¸ÀçÇÏ´Â °áÇÕ ÀÚ¸®´Â ÁÖ·Î 1Â÷ ±¸Á¶»ó¿¡¼­ ¿¬¼ÓÀûÀÎ ¾Æ¹Ì³ë»êµé·Î ÀÌ·ç¾îÁø´Ù(Short Linear Motif, SLiM) [32, 33]. µû¶ó¼­, ±ä IDRµé¿¡´Â ´Ù¼öÀÇ °áÇÕ ÀÚ¸®µéÀÌ Á¸ÀçÇÒ È®·üÀÌ ³ôÀ¸¸ç, À̵éÀ» ÅëÇØ ´Ù¾çÇÑ Ç¥Àû ´Ü¹éÁúµé°ú »óÈ£ÀÛ¿ë ÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ ´ÙÁß ¼ººÐ º¹ÇÕü(multi-component complex)¸¦ Çü¼ºÇÏ´Â ¼ºÁú·Î ÀÎÇØ ´Ù¾çÇÑ ½ÅÈ£ Àü´Þ °æ·Î¸¦ Á¾ÇÕ/ó¸®ÇÏ´Â ÁßÃß ´Ü¹éÁú(central hub proteins)¿¡ ÁÖ·Î ±ä IDRµéÀÌ Á¸ÀçÇÑ´Ù [34]. ÁßÃß ´Ü¹éÁú Áß ÇϳªÀÎ AxinÀÇ ´ëºÎºÐ(¾à 600 ¾Æ¹Ì³ë»ê)Àº IDRÀ̸ç, ¿©±â¿¡ Á¸ÀçÇÏ´Â ´Ù¾çÇÑ °áÇÕ motifµéÀº Wnt, TGF, JNK, p53µîÀÇ ½ÅÈ£ Àü´Þ °æ·Î¿¡ °ü¿©ÇÏ´Â ´Ü¹éÁúµé°ú ÀûÀýÇÑ ½Ã°£°ú °ø°£¿¡¼­ »óÈ£ÀÛ¿ëÇÏ¿© °¢ °æ·Î¿¡ ÀûÇÕÇÑ ´ÙÁß ¼ººÐ º¹ÇÕü¸¦ Çü¼ºÇÑ´Ù [35]. Wnt pathwayÀÇ °æ¿ì, AxinÀÇ IDRÀº ¥â-catenin, casein kinase I¥á (CKI¥á), glycogen synthetase kinase 3¥â(GSK3¥â)¿Í µ¿½Ã¿¡ °áÇÕÇÏ¿© Ç¥Àû ´Ü¹éÁúµé °£ »óÈ£ÀÛ¿ëÀ» À¯µµÇϴµ¥, ÀÌ´Â ¥â-cateninÀÇ CKI¥á, GSK3¥â¿¡ ÀÇÇÑ È¿À²ÀûÀÎ ÀλêÈ­ ±×¸®°í ºÐÇØ·Î À̾îÁø´Ù (¥â-catenin destruction complex). Áï, ÁßÃß ´Ü¹éÁúµéÀº ƯÁ¤ ¹ÝÀÀ¿¡ Âü¿©ÇÏ´Â ´Ü¹éÁúµéÀÇ ±¹ÁöÀû ³óµµ(local concentration)¸¦ Áõ°¡½ÃÄÑ ¹ÝÀÀÀ» ÃËÁø½ÃÅ°´Â scaffold ¿ªÇÒÀ» ÇÑ´Ù.
ÃÖ±Ù¿¡´Â ´ÙÁß ¼ººÐ º¹ÇÕü¸¦ Çü¼ºÇÏ´Â IDRÀÌ ¿ÜºÎÀÇ ½ÅÈ£(»ýü ºÐÀÚÀÇ °áÇÕ È¤Àº post-translational modification)¸¦ ÀÎÁöÇÏ°í º¹ÇÕü ³» °áÇÕ ´Ü¹éÁúµé °£ ¼ÒÅëÀ» ¸Å°³ÇÔÀ¸·Î½á º¹ÇÕüÀÇ ÀüüÀûÀÎ ±¸Á¶ ¹× ±â´ÉÀ» Á¶ÀýÇÑ´Ù´Â Èï¹Ì·Î¿î °¡¼³ÀÌ Á¦½ÃµÇ¾ú´Ù [36, 37]. Áï, IDR³» ´Ù¾çÇÑ °áÇÕ ÀÚ¸®µé °£ allosteric couplingÀÌ Á¸ÀçÇÑ´Ù´Â °ÍÀÌ´Ù. ÀÌ °¡¼³Àº allosteric couplingÀº µÎ °áÇÕ ÀÚ¸® °£ Á¤ÇüÈ­µÈ ±¸Á¶ÀÇ °æ·Î¸¦ ÅëÇØ ÀÌ·ç¾îÁø´Ù´Â ÀüÅëÀûÀÎ °³³ä°ú ±«¸®°¡ ÀÖÀ¸³ª, ¿­¿ªÇÐÀû ºÐ¼®À» ÅëÇØ IDR ³» µÎ °áÇÕ ÀÚ¸® »çÀÌ¿¡¼­µµ allosteric couplingÀÌ °¡´ÉÇÔÀ» ÀÔÁõÇÏ´Â ÀÌ·ÐÀû Åä´ë°¡ Á¦½ÃµÈ ¹Ù ÀÖ´Ù [38]. °¡Àå °£´ÜÇÑ two-domain modelÀ» ÀÌ¿ëÇÏ¿© ÀÌ ÀÌ·ÐÀÇ ÇÙ½É ÀüÁ¦¿Í °á°ú¸¦ ³íÀÇÇÏ°Ú´Ù (±×¸² 2). ÀüÁ¦1. µÎ domain ¸ðµÎ Ç®¸°(disordered) ȤÀº Á¤ÇüÈ­(ordered)µÈ »óÅ·ΠÁ¸ÀçÇϸç, Ç¥Àû ´Ü¹éÁú°ú ºñ°áÇÕ ½Ã¿¡´Â Ç®¸° »óÅÂÀÇ ÀÚÀ¯ ¿¡³ÊÁö(Gibbs free energy)°¡ ´õ ³·¾Æ ensemble³»¿¡¼­ ¿ì¼¼ÇÑ ºñÀ²À» Â÷ÁöÇÑ´Ù. ÀüÁ¦2. µÎ domain°£ positive couplingÀÌ Á¸ÀçÇÏ¿©, µ¿½Ã¿¡ °°Àº »óÅÂ(Ç®¸° ȤÀº Á¤ÇüÈ­)·Î Á¸ÀçÇÒ È®·üÀÌ È¥ÇÕµÈ »óÅ·ΠÁ¸ÀçÇÒ È®·üº¸´Ù ³ô´Ù. ÀüÁ¦3. Ç¥Àû ´Ü¹éÁúµéÀº °¢ domainÀÇ Á¤ÇüÈ­µÈ »óÅ¿¡ ¼±ÅÃÀûÀ¸·Î °áÇÕÇÑ´Ù(coupled folding). Áï, °áÇÕ »óÅ¿¡¼­´Â Á¤ÇüÈ­µÈ »óÅÂÀÇ ÀÚÀ¯ ¿¡³ÊÁö°¡ ´õ ³·´Ù. ÀüÁ¦1, 2¿¡ ÀÇÇÏ¿©, Ç¥Àû ´Ü¹éÁúÀÇ ºÎÀç ½Ã¿¡´Â(±×¸²2ÀÇ ensemble 1) µÎ domain ¸ðµÎ Ç®¸° »óÅ·ΠÁ¸ÀçÇÒ È®·üÀÌ °¡Àå ³ô°í(0.6), ¸ðµÎ Á¤ÇüÈ­µÈ »óÅÂ(0.2) ±×¸®°í È¥ÇÕµÈ »óÅÂ(0.1)ÀÇ Â÷·Ê·Î Á¸ÀçÇÑ´Ù. ù ¹ø° Ç¥Àû ´Ü¹éÁúÀÌ ÇØ´ç domain¿¡ °áÇÕÇÒ °æ¿ì(ensemble 2 ȤÀº 3), ÀüÁ¦2, 3¿¡ ÀÇÇÏ¿©, °áÇÕµÈ domainÀº ¸ðµÎ Á¤ÇüÈ­µÈ »óÅ·ΠÁ¸ÀçÇÏ°í, positive coupling¿¡ ÀÇÇØ ´Ù¸¥ domainµµ ´ëºÎºÐ Á¤ÇüÈ­µÈ »óÅ·Πº¯È¯µÇ¸é¼­ Á¸Àç È®·üÀÌ 0.3¿¡¼­ 0.8·Î Áõ°¡ÇÑ´Ù. µû¶ó¼­, µÎ ¹ø° Ç¥Àû ´Ü¹éÁúÀº ÇØ´ç domain¿¡ ´ëÇÏ¿© ´õ ³ôÀº (ù ¹ø° Ç¥Àû ´Ü¹éÁúÀÇ ºÎÀç ½Ã¿¡ ºñÇÏ¿©) °áÇÕ·ÂÀ» º¸Àδ٠(K1' > K1 ȤÀº K2' > K2). º» ÀÌ·ÐÀº µÎ °áÇÕ ÀÚ¸® »çÀÌ¿¡ Á¤ÇüÈ­µÈ °æ·Î°¡ Á¸ÀçÇÏÁö ¾Ê´õ¶óµµ, µÎ ÀÚ¸®ÀÇ »ó´ëÀûÀÎ ¾ÈÁ¤¼º(stability)°ú ¿­¿ªÇÐÀû ¿¬°á¼º(coupling), ±×¸®°í Ç¥Àû ´Ü¹éÁúÀÇ ¼±ÅÃÀû °áÇÕ(preferential binding) °£ÀÇ ¼¼¹ÐÇÑ ±ÕÇü¿¡ ÀÇÇØ allosteric couplingÀÌ Çü¼ºµÉ ¼ö ÀÖÀ½À» ÀÔÁõÇÑ´Ù.

±×¸² 2. IDRµé °£ÀÇ allosteric couplingÀ» ±â¼úÇÏ´Â ¿­¿ªÇÐÀû ¸ðµ¨.
±×¸² 2. IDRµé °£ÀÇ allosteric couplingÀ» ±â¼úÇÏ´Â ¿­¿ªÇÐÀû ¸ðµ¨.

IDR¿¡ ÀÇÇØ ¸Å°³µÇ´Â allosteric couplingÀº P1 bacteriophageÀÇ toxin-antitoxin operon Á¶Àý¿¡ °ü¿©ÇÏ´Â Doc1(toxin)°ú Phd(antitoxin)ÀÇ »óÈ£ÀÛ¿ë ¿¬±¸¸¦ ÅëÇØ ÃÖÃÊ·Î °üÂûµÇ¾ú´Ù (±×¸² 3) [39]. PhdÀÇ N-terminal DNA binding domainÀº Á¤ÇüÈ­µÈ ±¸Á¶¿Í ºÎºÐÀûÀ¸·Î Ç®¸° ±¸Á¶ °£ ÆòÇü »óÅ·ΠÁ¸ÀçÇϸç, C-terminal Doc1 binding domainÀº ¿ÏÀüÈ÷ Ç®¸° ±¸Á¶(IDR)¿Í Á¤ÇüÈ­µÈ ±¸Á¶ °£ ÆòÇü »óÅ·ΠÁ¸ÀçÇÑ´Ù. µÎ domain °£ positive allosteric couplingÀ¸·Î ÀÎÇØ, Doc1ÀÇ °áÇÕ ½Ã µÎ domain ¸ðµÎ Á¤ÇüÈ­µÈ ±¸Á¶·Î ÆòÇü À̵¿ÀÌ µÇ°í, ±× °á°ú·Î operator DNA¿ÍÀÇ °áÇÕ ±×¸®°í operonÀÇ repressionÀÌ ÀÌ·ç¾îÁø´Ù. Adenoviral oncoprotein E1AÀÇ N-terminal IDR°ú ¼÷ÁÖ ´Ü¹éÁú CBP ±×¸®°í pRb °£ »óÈ£ÀÛ¿ë¿¡¼­µµ IDR¿¡ Á¸ÀçÇÏ´Â CBP¿Í pRb °áÇÕÀÚ¸®µéÀÇ coupled folding¿¡ ÀÇÇÑ positive couplingÀÌ Á¸ÀçÇϴµ¥, ÀÌ °æ¿ì¿¡´Â ƯÀÌÇÏ°Ô CBP¿Í ºÎºÐÀûÀ¸·Î °áÇÕÇÏ´Â E1AÀÇ N-terminal end°¡ Á¦°ÅµÇ¸é CBP¿Í pRb°£ positive couplingÀÌ negative couplingÀ¸·Î ÀüȯµÈ´Ù [40]. ÀÌ´Â ¼¼Æ÷ ³»¿¡ Á¸ÀçÇÏ´Â CBP¿ÜÀÇ ´Ù¸¥ Ç¥Àû ´Ü¹éÁúµéÀÇ N-terminal end °áÇÕ À¯¹«¿¡ µû¶ó CBP¿Í pRb °£ ¿¬°á °ü°è°¡ ±ÔÁ¤µÇ°í, ±Ã±ØÀûÀ¸·Î E1A º¹ÇÕüÀÇ ±â´É(¼÷ÁÖ ¼¼Æ÷ ÁÖ±â Æı«, ¹ÙÀÌ·¯½º À¯ÀüÀÚ ¹ßÇöÀÇ È°¼ºÈ­ µî)ÀÌ Á¶ÀýµÉ ¼ö ÀÖÀ½À» ¾Ï½ÃÇÑ´Ù. ÇÙ-¼¼Æ÷Áú °£ ¹°Áú À̵¿À» °üÀåÇÏ´Â Nuclear Pore Complex (NPC)ÀÇ central transport channel¿¡ Á¸ÀçÇÏ´Â Nup58ÀÇ C-terminal IDR°ú »ýü °íºÐÀÚ¸¦ ¼ö¼ÛÇÏ´Â karyopherin ¥â1 (Kap ¥â1) °£ »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ÃÖ±Ù ¿¬±¸´Â Nup58ÀÇ IDR°ú ordered domain °£ allosteric couplingÀ» ÀÔÁõÇÏ¿´´Ù (±×¸² 4) [41]. Nup58ÀÇ C-terminal IDR°ú Kap ¥â1ÀÇ ´Ù°¡ °áÇÕ(multivalent binding)¿¡ ÀÇÇØ Nup58°ú Nup54ÀÇ ¥á-helix Áö¿ªµé °£ »óÈ£ÀÛ¿ëÀÌ ÃËÁøµÇ´Âµ¥ (positive coupling), À̸¦ ¹ÙÅÁÀ¸·Î ÇÙ-¼¼Æ÷Áú °£ »ýü °íºÐÀÚÀÇ ¼ö¼Û·®¿¡ µû¸¥ central channelÀÇ ±¸Á¶ º¯È­¿¡ ´ëÇÑ Åë°è ¿­¿ªÇÐÀû ¸ðµ¨ÀÌ Á¦½ÃµÇ¾ú´Ù.

±×¸² 3. Antitoxin PhdÀÇ N-terminal DNA binding domain°ú C-terminal Doc1 binding domain°£ allosteric coupling.
±×¸² 3. Antitoxin PhdÀÇ N-terminal DNA binding domain°ú C-terminal Doc1 binding domain°£ allosteric coupling.

±×¸² 4. Nup58ÀÇ helical domain°ú C-terminal IDRÀÇ allosteric coupling.
±×¸² 4. Nup58ÀÇ helical domain°ú C-terminal IDRÀÇ allosteric coupling.

»ó±â ³íÀÇµÈ ¿¬±¸µéÀº IDR-mediated allosteric coupling °³³äÀ» ÁöÁöÇÏ´Â Áß¿äÇÑ ½ÇÇèÀû ´Ü¼­¸¦ Á¦°øÇÏÁö¸¸ ÀÌ¿¡ ´ëÇÑ ±¸Ã¼Àû ºÐÀÚ ±â¹ÝÀ» Á¦½ÃÇÏÁö ¸øÇÑ´Ù. ¾Õ¼­ »ìÆ캻 ÀÌ·ÐÀû ¸ðµ¨ ¿ª½Ã µÎ domain °£ couplingÀÇ Á¸À縦 °¡Á¤ÇßÀ» »Ó (ÀüÁ¦ 2) ±× ±âÀüÀº ³íÀÇÇÏÁö ¾Ê°í ÀÖ´Ù. µû¶ó¼­ IDR-mediated allosteric couplingÀÇ ºÐÀÚ ±â¹ÝÀ» ÀÌÇØÇϱâ À§ÇÑ ´Ù°¢µµÀÇ »ý¹°¹°¸®ÇÐÀû ¿¬±¸°¡ ÇÊ¿äÇϸç, À̸¦ ÅëÇؼ­¸¸ IDR-mediated allosteric couplingÀÌ °®´Â °íÀ¯ÀÇ Æ¯Â¡(ordered domain¿¡ ºñ±³ÇÏ¿©)À» ±Ô¸íÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ, º» ¿¬±¸µéÀº »ó´ëÀûÀ¸·Î ȯ¿øµÈ(IDRÀ» Æ÷ÇÔÇÏ´Â 20 kDa ¹Ì¸¸ÀÇ È¤Àº Àý´ÜµÈ(truncated) ´Ü¹éÁú°ú µÎ °³ÀÇ Ç¥Àû ´Ü¹éÁú °£ °áÇÕ) ¸ðµ¨ ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ´Â ÇÑ°èÁ¡ÀÌ ÀÖ¾î IDR-mediated allosteric coupling °³³äÀ» ÀϹÝÈ­Çϱâ À§Çؼ­´Â º¹ÀâÇÏ°í ÀÚ¿¬ »óÅ¿¡ °¡±î¿î ½Ã½ºÅÛ(full length or near intact systems)À¸·Î È®ÀåµÈ ÈÄ¼Ó ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.
ÇöÀç ¿¬±¸ÀÇ ÇÑ°è¿¡µµ ºÒ±¸ÇÏ°í, IDR¿¡ ÀÇÇÑ ´ÙÁß ¼ººÐ º¹ÇÕü(multi-component macromolecular complexes) ³» allosteric couplingÀÇ Æ¯¼ö¼ºÀ» ÃßÃøÇÒ ¼ö ÀÖ´Ù. ù°, IDR¿¡ ÀÇÇØ Çü¼ºµÈ ´ÙÁß ¼ººÐ º¹ÇÕü´Â À¯»çÇÑ free energy¸¦ °®´Â ´Ù¾çÇÑ ÇüŵéÀ» ÃëÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ensemble ³» ÇüÅÂµé °£ activation energy barrier´Â ³·´Ù(flat energy landscape). µÑ°, ´ÙÁß ¼ººÐ º¹ÇÕü´Â IDR¿¡ Á¸ÀçÇÏ´Â ´Ù¼öÀÇ °áÇÕ È¤Àº º¯Çü ÀÚ¸®µéÀ» ÀÌ¿ëÇÏ¿© ´Ù¾çÇÑ ¿ÜºÎ ½ÅÈ£(Ç¥Àû ´Ü¹éÁúÀÇ °áÇÕ È¤Àº PTM)µéÀ» ÀÎÁöÇÒ ¼ö ÀÖ´Ù. ¼Â°, °¢ ¿ÜºÎ ½ÅÈ£´Â ƯÁ¤ °áÇÕ ´Ü¹éÁúµé°ú ÇØ´ç °áÇÕ ÀÚ¸®µé °£ »óÈ£ÀÛ¿ëÀ» Á¶ÀýÇÏ¿© (allosteric facilitation or inhibition), º¹ÇÕüÀÇ ensembleÀ» ƯÁ¤ ±¸¼º ¹× ÇüÅ·ΠÀ̵¿½Ãų ¼ö ÀÖÀ¸¸ç ÀÌ´Â ±â´ÉÀÇ ÀüȯÀ¸·Î À̾îÁø´Ù. ÀÌ·¯ÇÑ ÀüȯÀº º¹ÇÕüÀÇ flat energy landscapeÀ¸·Î ÀÎÇØ È£ÀÇÀûÀ¸·Î ±×¸®°í ºü¸£°Ô ÀÌ·ç¾îÁø´Ù. Áï, IDR¿¡ ÀÇÇØ Çü¼ºµÈ ´ÙÁß ¼ººÐ º¹ÇÕü´Â Á¤ÇüÈ­µÈ ±¸Á¶¸¦ °®´Â º¹ÇÕü¿¡ ºñÇÏ¿©, ¿ªµ¿ÀûÀ¸·Î º¯È­ÇÏ´Â ¿ÜºÎ ½ÅÈ£¿¡ ´Ù¾çÇÏ°í ½Å¼ÓÇÏ°Ô ¹ÝÀÀÇÒ ¼ö ÀÖ´Â ÀáÀ缺À» °®°í ÀÖ´Ù.

Conclusion

Áö³­ 20³â°£ÀÇ ¿¬±¸¸¦ ÅëÇØ, IDR´ëÇÑ ÀνÄÀº ordered domain°£ ¼öµ¿Àû linker ȤÀº ´Ü¹éÁú ¸»´Ü¿¡¼­ ¼¼Æ÷ ³» ÇÁ·Î¼¼½º Àü¹Ý¿¡ °ü¿©ÇÏ´Â ÁÖ¿ä Á¶Àý ÀÎÀÚ·Î ÁøÈ­ÇÏ¿´´Ù. ÀÌ·¯ÇÑ ÀνÄÀÇ ÀüȯÀº ´ÙÀ½ ´Ü°èÀÇ µµÀüÀûÀÎ Áú¹®µéÀ» »ý¼ºÇÑ´Ù. Macromolecular crowdingÀÌ Áö¹èÇÏ´Â ¼¼Æ÷ ³»¿¡¼­ IDRÀº ¾î¶°ÇÑ ±¸Á¶ »óÅ·ΠÁ¸ÀçÇÒ °ÍÀΰ¡? ÇöÀç ¿¬±¸ ´ë»óÀÇ ´ëºÎºÐÀ» ÀÌ·ç´Â isolated IDR°ú Àüü ´Ü¹éÁú(full length)ÀÇ context¿¡¼­ÀÇ IDRÀÌ °°Àº ±¸Á¶Àû »óÅÂ¿Í ±â´É¼ºÀ» ³ªÅ¸³¾ °ÍÀΰ¡? ±×¸®°í ¾Õ¼­ ¾ð±ÞÇÑ °Íó·³ ´ÙÁß ¼ººÐ ½Ã½ºÅÛ¿¡¼­ ´Ù¾çÇÑ °áÇÕ ÆÄÆ®³Ê¿Í ¾î¶»°Ô »óÈ£ÀÛ¿ëÇϸç, ¾î¶»°Ô ÀÌµé °£ ¼ÒÅëÀ» Á¶ÀýÇÒ °ÍÀΰ¡? ¶ÇÇÑ, À̹ø ³í´Ü¿¡¼­´Â ´Ù·çÁö ¾Ê¾ÒÁö¸¸, IDR¿¡ ÀÇÇÑ liquid-liquid phase separation(LLPS) ȤÀº ¸·ÀÌ ¾ø´Â ¼¼Æ÷ ¼Ò±â°ü(proteinaceous membrane-less organelles, PMLO)ÀÇ Çü¼ºÀº ´Ù¾çÇÑ »ý¹°ÇÐ ºÐ¾ß¿¡¼­ ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖ´Ù [42]. ±×·¯³ª ÇöÀç ¿¬±¸´Â LLPS, PLMOÀÇ Çö»óÀûÀÎ °üÂû¿¡ ÁýÁߵǾî ÀÖ¾î, À̵éÀÇ Çü¼º driving force¹× mechanism, ±×¸®°í ±× ±â´É¼º¿¡ ´ëÇÑ ÀÌÇØ´Â Ãʺ¸ÀûÀÎ ´Ü°è¿¡ ¸Ó¹°·¯ÀÖ´Ù. ´õ ±Ùº»ÀûÀ¸·Î´Â LLPSÀÇ ±â¹ÝÀ» ÀÌ·ç´Â IDR-IDR ȤÀº IDR-Ç¥Àû ´Ü¹éÁúµé °£ ´Ù°¡ »óÈ£ÀÛ¿ë(multivalent interaction)¿¡ ´ëÇÑ ÀÌÇØ°¡ ºÎÁ·ÇÏ´Ù. µû¶ó¼­ ´Ù°¡ »óÈ£ÀÛ¿ë¿¡¼­ ±âÀÎÇÏ´Â ´Ù¾çÇÑ °áÇÕ ¸ðµåÀÇ ¿­¿ªÇÐÀû/µ¿¿ªÇÐÀû ¸ðµ¨¸µ ¹× À̵鿡 ´ëÇÑ °üÂû, ºÐ¼® ¹æ¹ýÀÇ °³¹ßÀÌ ¼±Çà µÇ¾î¾ß ÇÑ´Ù. ±Ã±ØÀûÀ¸·Î, IDR¿¡ ´ëÇÑ ´Ù¹æ¸éÀÇ ÅëÇÕÀûÀÎ ¿¬±¸µéÀº »ýü °íºÐÀÚ °£ »óÈ£ÀÛ¿ë ¹× ±×¿¡ ÀÇÇÑ »ýü Çö»ó Á¶Àý¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ÀÌÇØ°¡ ´õ È®ÀåµÇ°í ±í¾îÁö´Â ±âȸ¸¦ Á¦°øÇÒ °ÍÀÌ´Ù.

ÀúÀÚ¾à·Â

  • 1997-2003

    ¼­¿ï´ëÇб³ »ý¸í°úÇкÎ, Çлç

  • 2003-2008

    University of Wisconsin-Madison, Ph.D.

  • 2009-2017

    Rockefeller University, Postdoctoral associate

  • 2017-ÇöÀç

    ¼­¿ï´ëÇб³ »ý¸í°úÇкÎ, Á¶±³¼ö

Âü°í¹®Çå

  • [1]

    Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J. 2007;92:1439-56.

  • [2]

    Uversky VN, Gillespie JR, Fink AL. Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins. 2000;41:415-27.

  • [3]

    Papoian GA. Proteins with weakly funneled energy landscapes challenge the classical structure-function paradigm. Proc Natl Acad Sci U S A. 2008;105:14237-8.

  • [4]

    Chen J. Towards the physical basis of how intrinsic disorder mediates protein function. Arch Biochem Biophys. 2012;524:123-31.

  • [5]

    Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958;181:662-6.

  • [6]

    Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature. 1960;185:416-22.

  • [7]

    White FH, Jr. Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease. J Biol Chem. 1961;236:1353-60.

  • [8]

    Anfinsen CB, Haber E, Sela M, White FH, Jr. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A. 1961;47:1309-14.

  • [9]

    Wootton JC. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem. 1994;18:269-85.

  • [10]

    Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn. 2012;30:137-49.

  • [11]

    Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002;323:573-84.

  • [12]

    Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci U S A. 1996;93:11504-9.

  • [13]

    Penkett CJ, Redfield C, Dodd I, Hubbard J, McBay DL, Mossakowska DE, et al. NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. J Mol Biol. 1997;274:152-9.

  • [14]

    Bose HS, Whittal RM, Baldwin MA, Miller WL. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A. 1999;96:7250-5.

  • [15]

    Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999;293:321-31.

  • [16]

    van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114:6589-631.

  • [17]

    Dyson HJ, Wright PE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol. 2002;12:54-60.

  • [18]

    Sugase K, Dyson HJ, Wright PE. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature. 2007;447:1021-5.

  • [19]

    Weiss MA, Ellenberger T, Wobbe CR, Lee JP, Harrison SC, Struhl K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature. 1990;347:575-8.

  • [20]

    Zhou P, Sun LJ, Dotsch V, Wagner G, Verdine GL. Solution structure of the core NFATC1/DNA complex. Cell. 1998;92:687-96.

  • [21]

    Spolar RS, Record MT, Jr. Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994;263:777-84.

  • [22]

    Fuxreiter M, Simon I, Friedrich P, Tompa P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol. 2004;338:1015-26.

  • [23]

    Borcherds W, Theillet FX, Katzer A, Finzel A, Mishall KM, Powell AT, et al. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol. 2014;10:1000-2.

  • [24]

    Rogers JM, Wong CT, Clarke J. Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. J Am Chem Soc. 2014;136:5197-200.

  • [25]

    Tompa P, Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci. 2008;33:2-8.

  • [26]

    Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev. 2016;116:6424-62.

  • [27]

    Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol. 2004;11:358-64.

  • [28]

    Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell. 2007;128:269-80.

  • [29]

    Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, Thomas PJ, et al. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proc Natl Acad Sci U S A. 2013;110:E4427-36.

  • [30]

    Lewarchik CM, Peters KW, Qi J, Frizzell RA. Regulation of CFTR trafficking by its R domain. J Biol Chem. 2008;283:28401-12.

  • [31]

    Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R. Extended disordered proteins: targeting function with less scaffold. Trends Biochem Sci. 2003;28:81-5.

  • [32]

    Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, et al. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci. 2008;13:6580-603.

  • [33]

    Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born D, et al. The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res. 2014;42:D259-66.

  • [34]

    Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 2005;272:5129-48.

  • [35]

    Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol. 2008;98:85-106.

  • [36]

    Tsai CJ, Nussinov R. Gene-specific transcription activation via long-range allosteric shape-shifting. Biochem J. 2011;439:15-25.

  • [37]

    Fuxreiter M, Toth-Petroczy A, Kraut DA, Matouschek A, Lim RY, Xue B, et al. Disordered proteinaceous machines. Chem Rev. 2014;114:6806-43.

  • [38]

    Hilser VJ, Thompson EB. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc Natl Acad Sci U S A. 2007;104:8311-5.

  • [39]

    Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell. 2010;142:101-11.

  • [40]

    Ferreon AC, Ferreon JC, Wright PE, Deniz AA. Modulation of allostery by protein intrinsic disorder. Nature. 2013;498:390-4.

  • [41]

    Koh J, Blobel G. Allosteric Regulation in Gating the Central Channel of the Nuclear Pore Complex. Cell. 2015;161:1361-73.

  • [42]

    Turoverov KK, Kuznetsova IM, Fonin AV, Darling AL, Zaslavsky BY, Uversky VN. Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends Biochem Sci. 2019;44:716-28.