ÃÖ±Ù ¿¬±¸ ¼Ò½Ä

ÀåÇý½Ä
´ÜºÐÀÚ ¼­¿­ ºÐ¼®±â¸¦ ÀÌ¿ëÇÑ RNA ¼ö½Ä ¿¬±¸
ÀåÇý½Ä ¼­¿ï´ëÇб³ »ý¸í°úÇкÎ
¸ÞÀÏ hyeshik@snu.ac.kr

RNA ¼ö½ÄÀÇ ±â´É°ú Á¾·ù

Àß ¾Ë·ÁÁø »ç¶÷ ´Ü¹éÁúÀÇ 0.8%´Â RNA¸¦ ¼ö½Ä(modify)ÇÒ ¼ö ÀÖ´Ù [1]. DNA³ª ´Ü¹éÁú°ú ¸¶Âù°¡Áö·Î RNAµµ ±âº» È­ÇÐ ±¸Á¶¿¡¼­ Ãß°¡ÀûÀÎ º¯È­¸¦ °ÞÀ¸¸é ¾ÈÁ¤¼º°ú ±¸Á¶, ´Ü¹éÁú °áÇÕ µî¿¡¼­ Â÷ÀÌ°¡ »ý°Ü³­´Ù [2, 3]. ¾Æµ¥³ë½ÅÀÇ N6¿¡ ¸ÞÆ¿±â°¡ ºÙ´Â 6-methyladenosine (m6A), À¯¸®µòÀÇ N1 ´ë½Å C5¿¡ ´çÀÌ °áÇÕÇÏ´Â pseudouridine (ψ), ¹éº» 2′ ÀÚ¸®ÀÇ ¼ö»êÈ­±â¿¡ ¸ÞÆ¿ÀÌ Ãß°¡µÇ´Â 2′-O-methylation (Nm)ÀÌ ´ëÇ¥ÀûÀÌ´Ù. ¼ö½ÄµÈ ¿°±â°¡ °¡Àå ÈçÇÑ °÷Àº tRNA´Ù. ¼¼Æ÷ ¾ÈÀÇ tRNA¿¡¼­´Â 20-30%ÀÇ ¿°±â°¡ ψ¿Í dihydrouridineÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ÇüÅ·Πº¯ÇÑ´Ù. rRNAµµ ¶ÇÇÑ 7-methylguanosine (m7G), 1-methyladenosine (m1A) µîÀ» Æ÷ÇÔÇÑ´Ù. mRNAµµ ³·Àº ºóµµÀÌÁö¸¸ ¼ö½ÄÀÌ Á¸ÀçÇÑ´Ù. m6A°¡ °¡Àå Àß ¾Ë·ÁÁ® Àִµ¥, mRNAÀÇ ¾ÈÁ¤¼º°ú ´Ü¹éÁú »ý»ê È¿À²¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù [3]. Æ÷À¯µ¿¹°ÀÇ mRNA¿¡¼­ ψ, m7G, m1AÀÌ ¾ó¸¶³ª ±â´ÉÀÌ ÀÖÀ»Áö´Â ¾ÆÁ÷ Á» ´õ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù [4].

Àü»çü ¼öÁØÀÇ ±âÁ¸ RNA Ž»ö ¹æ¹ý

Àü»çü ¼öÁØ¿¡¼­ ¼ö½ÄÀ» Ž»öÇÏ·Á¸é, »ýÈ­ÇÐÀû Àüó¸® ÈÄ RNA-SeqÀ¸·Î º¯È­¸¦ ã´Â´Ù. ¼¼ºÎÀûÀ¸·Î´Â Àüó¸® ¹æ¹ý¿¡ µû¶ó ´Ù¾çÇÑ Á¢±Ù¹ýÀÌ ÀÖ´Ù. MeRIP-seq¿¡¼­´Â RNA¸¦ ¾àÇÏ°Ô ÆÄÆíÈ­ÇÑ µÚ¿¡, ¼ö½Ä ¿°±â¿¡ ´ëÇÑ Ç×ü·Î RNA¸¦ Á¤Á¦Çؼ­ ºÐ¼®ÇÑ´Ù. È­ÇйÝÀÀÀ» ÀÌ¿ëÇؼ­ Ç¥ÁöÇϰųª Á¤Á¦Çϱ⵵ Çϴµ¥, ψ¿¡ ´ëÇؼ­´Â N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC)¸¦ ÀÌ¿ëÇؼ­ ¼±ÅÃÀûÀ¸·Î Ç¥ÁöÇؼ­ Á¤Á¦ÇÒ ¼ö ÀÖ´Ù [5, 6]. Ç×ü³ª ´Ü¹éÁúÀ» °øÀ¯°áÇÕÀ¸·Î ºÙÀÎ µÚ ³²Àº ºÎºÐÀ» ÀÌ¿ëÇؼ­ °ËÃâÇϰųª [7, 8], ¼ö½ÄµÈ ¿°±â¸¦ ÀÚ¸£Áö ¸øÇÏ´Â ¼±ÅÃÀû RNAºÐÇØÈ¿¼Ò¸¦ ó¸®Çؼ­ ¼­¿­ºÐ¼® °á°ú¿¡¼­ »ý¼ºµÇ´Â ÆÐÅÏÀ» ºñ±³ÇÏ¿© ¼ö½ÄµÈ ¿°±âÀÇ À§Ä¡¸¦ È®ÀÎÇÑ´Ù [9].

2¼¼´ë ¼­¿­ºÐ¼®±â¸¦ È°¿ëÇÏ´Â ¹æ¹ýµéÀº ¿©·¯°¡Áö ´Ù¸¥ ¹æ¹ýÀ¸·Î ¸¸µç Á¤º¸¸¦ ´ë·®À¸·Î Àдµ¥ À¯¿ëÇÏ°Ô »ç¿ëµÇ°í ÀÖ´Ù. ÇÏÁö¸¸, 2¼¼´ë ¼­¿­ºÐ¼®±â´Â cDNA·Î ¹Ýµå½Ã º¯È¯ÇØ¾ß Çϱ⠶§¹®¿¡ ¿ªÀü»ç °úÁ¤¿¡¼­ Á¤º¸°¡ ¼Õ½ÇµÇ¸ç, ªÀº ¸®µå ±æÀÌ·Î ÀÎÇÏ¿© ½ºÇöóÀ̽Ì, Æú¸®A ²¿¸® °°Àº RNA ºÐÀÚ »óÅ°¡ ¼Ò½ÇµÈ´Ù. À¯ÀüÀÚ ¼öÁØ¿¡¼­ ¼ö½Ä ºóµµ ºÐ¼®À̳ª »ùÇà °£ ºñ±³¿¡¼­ ºóµµ º¯È­¸¦ ºÐ¼®ÇÒ ¼ö´Â ÀÖÁö¸¸, À¯ÀüÀÚ ¶Ç´Â isoform ³»¿¡¼­ ºÐÀÚº°·Î ¹ß»ýÇÏ´Â Â÷À̸¦ °üÂûÇÏ´Â µ¥´Â È°¿ëÇϱ⠾î·Æ´Ù. ¼¼Æ÷ ³»¿¡¼­ RNAÀÇ »ý¾Ö ÁÖ±â Áß ´Ù¾çÇÑ ´Ü°è¸¦ °ÅÄ¡°í ¿©·¯°¡Áö ´Ù¸¥ ´Ü¹éÁú°ú »óÈ£ÀÛ¿ëÇÏ°í ÀÖ´Â ºÐÀÚµéÀÌ ¸ðµÎ È¥ÇÕµÈ Åë°è¸¸ º¼ ¼ö ÀÖÀ» »ÓÀÌ´Ù.

´ÜºÐÀÚ ¼­¿­ºÐ¼®±âÀÇ È°¿ë

´ë¾ÈÀ¸·Î ±ä ¸®µå¸¦ Á¦°øÇϸ鼭 ÁõÆøÇÏÁö ¾Ê°í ¼¼Æ÷ À¯·¡ ºÐÀÚ¸¦ ±×´ë·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´ÜºÐÀÚ ¼­¿­ºÐ¼®±â°¡ È°¿ëµÇ±â ½ÃÀÛÇß´Ù. PacBioÀÇ Single Molecule, Real-Time (SMRT) ¼­¿­ºÐ¼®±â¿Í Oxford Nanopore Technologies (ONT)ÀÇ ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â°¡ ´ëÇ¥ÀûÀÌ´Ù [10]. PacBio´Â ±ä ¸®µå¸¦ È°¿ëÇÏ¿© ºÐÀÚ ´ÜÀ§ ºñ±³°¡ °¡´ÉÇÏÁö¸¸ RNA´Â cDNA·Î ÀüȯÀÌ °ÅÀÇ ÇʼöÀûÀ̹ǷΠRNA ¼ö½ÄÀ» °³º°ÀûÀ¸·Î ºÐ¼®Çϱâ´Â ¾î·Æ´Ù. ONTÀÇ ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â´Â ¸®µå ´ÜÀ§ÀÇ ¼­¿­ Á¤È®µµ°¡ 93–95% Á¤µµ·Î »ó¿ëÈ­µÈ ¼­¿­ºÐ¼®±â Áß °¡Àå ³·´Ù. ÇÏÁö¸¸, 100 kbp°¡ ³Ñ´Â ´õ¿í ±ä ¸®µå¸¦ Á¦°øÇϸç, DNAÁßÇÕÈ¿¼Ò¸¦ »ç¿ëÇÏÁö ¾Ê¾Æ ¿Ó½¼-Å©¸¯ ¿°±â½ÖÀ¸·Î °ËÃâÇÒ ¼ö ¾ø´Â ÇÙ»ê ¿°±âµéÀÇ È­ÇÐÀû Á¶¼ºÀ» Àо ¼ö ÀÖ´Ù. ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â¿¡¼­´Â Àü±â°¡ ÅëÇÏÁö ¾Ê´Â ¸· »çÀÌ¿¡ 1 nm ³»¿ÜÀÇ ±¸¸ÛÀ» ³»°í ±× »çÀÌ·Î ÇÙ»êÀ» Åë°ú½ÃŲ´Ù (±×¸² 1). ÇÙ»êÀÌ À̵¿Çϸ鼭 ¿°±âÀÇ Å©±â¿Í ÀüÀÚ ¹Ðµµ¿¡ µû¶ó ±¸¸ÛÀ» ÅëÇØ Åë°úÇÒ ¼ö ÀÖ´Â ÀÌ¿ÂÀÇ ¾çÀÌ ½Ã½Ã°¢°¢ ¹Ù²î°Ô µÇ°í, ±× Àü·ù¸¦ ÃøÁ¤ÇÏ¿© ¼­¿­À» ºÐ¼®ÇÒ ¼ö ÀÖ´Ù (±×¸² 2).

±×¸² 1. ³ª³ëÆ÷¾î RNA ½ÃÄö½Ì ¸ð½Äµµ.Á÷°æ 1 nm Á¤µµÀÇ ±¸¸ÛÀÌ ÀÖ´Â ³ª³ëÆ÷¾î°¡ ¸·¿¡ »ðÀԵǾî ÀÖ´Ù. À§ ¾Æ·¡·Î -180 mV Á¤µµÀÇ Àü¾ÐÀÌ °É·Á¼­ RNA°¡ +±ØÀÎ ¾Æ·§ÂÊÀ¸·Î À̵¿ÇÑ´Ù. À̵¿ÇÏ´Â RNA¿¡¼­ Åë°úÇÏ°í ÀÖ´Â ¿°±âÀÇ Á¾·ù¿¡ µû¶ó Àü·ù°¡ ¹Ù²î°í, ±× Àü·ù¸¦ ÃøÁ¤Çؼ­ ¼­¿­À» È®ÀÎÇÑ´Ù. (ÀÌ À̹ÌÁö´Â DBCLS¿¡¼­ Á¦ÀÛÇÑ TogoTV¿¡¼­ Àç»ç¿ëÇßÀ½. Creative Commons 4.0-BY)

±×¸² 2. ³ª³ëÆ÷¾î RNA ½ÃÄö½Ì ½ÅÈ£. ³ª³ëÆ÷¾î RNA ½ÃÄö½ÌÀº 3′¿¡¼­ 5′·Î ÁøÇàÇÑ´Ù. DNA·Î ±¸¼ºµÈ ¾î´ðÅÍ°¡ °¡Àå ¸ÕÀú µîÀåÇÑ´Ù. 120 pA¿¡¼­ ¸Ó¹«¸£´Â ºÎºÐÀº RNA À̵¿ ¼Óµµ¸¦ Á¶ÀýÇÏ´Â ¸ðÅÍ ´Ü¹éÁúÀÌ ºÙ´Â ºÎºÐÀÌ´Ù. RNAÀÇ 3′ ³¡¿¡ ÀÖ´Â Æú¸®(A)°¡ ¸ÕÀú µîÀåÇÏ°í, mRNA°¡ ±× ´ÙÀ½¿¡ µû¶ó¿Â´Ù.

´ÜºÐÀÚ ¼­¿­ºÐ¼®±â¸¦ ÀÌ¿ëÇÑ ¼ö½Ä °ËÃâ

óÀ½À¸·Î ¿°±â ¼ö½Ä °ËÃâÀÇ °¡´É¼ºÀÌ º¸ÀÎ °ÍÀº ¸ÞÆ¿È­µÈ CpG DNA¿´´Ù. ¸ÞÆ¿È­µÈ »çÀÌƼµò(5mC)ÀÇ °æ¿ì¿¡´Â C¿Í´Â ²Ï ´Ù¸¥ ½ÅÈ£¸¦ ¸¸µé¾î³Â±â ¶§¹®¿¡, ¿ÀÈ÷·Á DNA¼­¿­ºÐ¼®¿¡¼­´Â Á¤È®µµ Çâ»ó¿¡ ¹æÇØ°¡ µÆ´Ù. °ð 5mC¿Í 5-hydroxymethyl-2′-deoxycytidine (5hmC)¿¡ ´ëÇÑ ¸ðµ¨ÀÌ Á¤¸³µÇ¸é¼­ À¯Àüü DNAÀÇ ¸ÞÆ¿È­ Áöµµ¸¦ ¹Ý¼öüº°·Î ºÐ¸®ÇÏ¿© ÀÛ¼ºÇÏ´Â °ÍÀÌ Àüº¸´Ù ÈξÀ ¿ëÀÌÇØÁ³´Ù [11, 12]. ±× ¿Ü¿¡µµ 6-methyl-2′-deoxyadenosine (6mA)¿¡ ´ëÇÑ ¸ðµ¨µµ ¹ßÇ¥µÇ°í [13, 14], 5-bromo-2′-deoxyuridine (BrdU), 5-ethynyluridine (EU) µî ´ë»çÇ¥Áö¸¦ ÀÌ¿ëÇؼ­ DNA ÇÕ¼ºÀÌ ÀϾ´Â ºÎºÐÀ» ³ôÀº È¿À²·Î Á¤È®ÇÏ°Ô Á¶»çÇÏ´Â ¹æ¹ýÀÌ µîÀåÇß´Ù [15, 16].

RNA ¼ö½Ä °ËÃâÀº ÃʱâºÎÅÍ ¸¹Àº ±â´ë¸¦ ¸ðÀ¸¸ç Á¦Ç° °³¹ß ´Ü°è¿¡¼­ºÎÅÍ °¡Àå Áß¿äÇÑ °ü½É»ç¿´´Ù. ONT¿¡¼­´Â m6A¿Í m5C°¡ °¢°¢ A¿Í C¿Í´Â ´Ù¸¥ ½ÅÈ£¸¦ ¹ß»ýÇؼ­ º£À̽ºÄÝ ¿À·ù¸¦ ¹ß»ý½ÃÅ°´Â »ç·Ê¸¦ º¸°íÇß´Ù [17]. UCSC¿¡¼­´Â ¼¼±ÕÀÇ 16S rRNA¿¡¼­ ψ¿Í m7G À§Ä¡¸¦ ¸¶Âù°¡Áö·Î º£À̽ºÄÝ ¿À·ù·Î ã¾Æ¼­ ´Ù¸¥ ½ÅÈ£°¡ ¹ß»ýÇÏ´Â °ÍÀ» ¹ß°ßÇß´Ù [18]. ±×¸®°í, 2019³â¿¡´Â ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â·Î RNA¸¦ ¿¬±¸ÇÏ´Â ÇÐ°è ¿¬±¸½ÇµéÀÇ ÄÁ¼Ò½Ã¾ö¿¡¼­ Àΰ£ lymphoblastoid cell lineÀÎ GM12878¿¡¼­ Àü»çü ¼öÁØ¿¡¼­ mRNA¿¡¼­ Æú¸®(A), ½ºÇöóÀÌ½Ì µî°ú ÇÔ²² m6A¸¦ ºÐ¼®Çß´Ù [19].

³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â·Î RNA ¼ö½Ä À§Ä¡¸¦ È®ÀÎÇÏ´Â ¼ÒÇÁÆ®¿þ¾îµéÀº ¹Ì¼¼ÇÑ Â÷À̵µ ¹Î°¨ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖµµ·Ï Àü·ù ½ÅÈ£ ´Ü°è¿¡¼­ ÁÖ·Î ºÐ¼®ÇÑ´Ù. Nanopolish¿Í Tombo´Â °ËÃâµÈ ½ÅÈ£¸¦ ÂüÁ¶ ¼­¿­¿¡¼­ ¿¹»óµÇ´Â ½ÅÈ£¿¡ Á¤·ÄÇÑ µÚ¿¡, ÂüÁ¶ ¼­¿­ÀÇ °¢ ¿°±â À§Ä¡¿¡¼­ Åë°è¼öÄ¡¸¦ °è»êÇÏ´Â ¹æ¹ýÀ¸·Î ¼ö½Ä À§Ä¡¸¦ ã´Â´Ù (Ç¥ 1). ½ÅÈ£¸¦ ´ëÁ¶ÇÏ´Â ¹æ¹ýµéÀº RNAÀÇ ´Ù¾çÇÑ ºÎºÐ°ú ¿¬°è ºÐ¼®ÇÏ´Â »õ·Î¿î ±âȸ¸¦ Á¦°øÇßÁö¸¸ ¿©ÀüÈ÷ È°¿ëÀÌ ½±Áö´Â ¾Ê´Ù. ÇÑ ¿°±â°¡ ¾Æ´Ï¶ó ÁÖº¯ÀÇ 5–9°³ Á¤µµÀÇ ¿°±â°¡ ÇѲ¨¹ø¿¡ ƯÁ¤ ½ÃÁ¡ÀÇ Àü·ù¿¡ ¿µÇâÀ» ÁÖ¸ç, RNA°¡ ¿òÁ÷ÀÌ´Â ¼Óµµ°¡ Å©°Ô ¹Ù²î¾î¼­, ±â¼úÀÇ ¹Î°¨µµ¿Í È°¿ëµµ¸¦ Å©°Ô Á¦ÇÑÇÑ´Ù [10]. ºÐÀÚ ´ÜÀ§¿¡¼­ Åë°èÀû ºÒÈ®½Ç¼ºÀÌ ³ô¾Æ ¼ö½Ä ºóµµ°¡ ³ôÀº °÷ÀÌ ¾Æ´Ï¸é À§¾ç¼º·üÀÌ ³ô´Ù. Á¤È®µµ¸¦ ³ôÀÌÀÚ¸é ¹Ýµå½Ã ¾ç¼º ´ëÁ¶±ºÀÌ µÉ Ç¥ÁØ ÂüÁ¶ ¸ðµ¨À̳ª À½¼º ´ëÁ¶±ºÀÌ µÉ ¼ö½ÄÀÌ ¾ø´Â »ùÇà µî, ºñ±³ÇÒ Â¦ÀÌ ¹Ýµå½Ã ÇÊ¿äÇÏ´Ù. ½ÅÈ£ ¼öÁØÀÇ °ËÃâ¹ýÀº ¾ÕÀ¸·Îµµ ¸¹Àº °³¼±ÀÌ ÇÊ¿äÇÒ Àü¸ÁÀÌ´Ù.

Ç¥ 1. ÁÖ¿ä ³ª³ëÆ÷¾î RNA ¼ö½Ä Ž»ö ÇÁ·Î±×·¥ÀÇ Æ¯Â¡
À̸§ ÃøÁ¤Ä¡ ºñ±³ ¹æ¹ý ÂüÁ¶
Nanopolish Æò±Õ Àü·ù (À̺¥Æ®) ´ë¾È ¸ðµ¨ ´ëÁ¶ [11]
Tombo Æò±Õ Àü·ù (ÂüÁ¶ ¿°±â ±âÁØ)
  • Ç¥ÁØ ¸ðµ¨°ú ÆíÂ÷
  • ´ë¾È ¸ðµ¨ ´ëÁ¶
  • »ùÇà ºÐÆ÷ °£ ´ëÁ¶
  • ÂüÁ¶ »ùÇà ºÐÆ÷¿ÍÀÇ ÆíÂ÷
[12]
EpiNano º£À̽ºÄÝ ¿¡·¯À²
  • Ç¥ÁØ ¿¡·¯À²°ú ÆíÂ÷
  • »ùÇà ºÐÆ÷ °£ ´ëÁ¶
[20]
ELIGOS º£À̽ºÄÝ ¿¡·¯À² »ùÇà ºÐÆ÷ °£ ´ëÁ¶ [21]
NanoCompore Æò±Õ Àü·ù+Áö¼Ó ½Ã°£ (ÂüÁ¶ ¿°±â ±âÁØ) »ùÇà ºÐÆ÷ °£ ´ëÁ¶ [22]
Ç¥ 1. ÁÖ¿ä ³ª³ëÆ÷¾î RNA ¼ö½Ä Ž»ö ÇÁ·Î±×·¥ÀÇ Æ¯Â¡

Á» ´õ °£´ÜÇÑ ¹æ¹ýÀ¸·Î ½ÅÈ£ Â÷ÀÌ¿¡ ÀÇÇØ ¹ß»ýÇÏ´Â º£À̽ºÄÝ ¿¡·¯¸¸ »ç¿ëÇϱ⵵ ÇÑ´Ù. ƯÁ¤ À§Ä¡¿¡¼­ ¹ß»ýÇÏ´Â ¿¡·¯À²À» À½¼º ´ëÁ¶±º°ú ºñ±³ÇÏ¿© Åë°èÀûÀ¸·Î ¶Ñ·ÇÇÏ°Ô ¿¡·¯À²ÀÌ »ó½ÂÇÑ ºÎºÐÀ» ã´Â ¹æ½ÄÀÌ´Ù. Yeast¿Í Arabidopsis¿¡¼­ °¢°¢ m6A ¼ö½ÄÀ» ´ã´çÇÏ´Â È¿¼Ò¸¦ Á¦°ÅÇÏ°í º£À̽ºÄÝ ¿¡·¯¸¦ ºñ±³ÇßÀ» ¶§ ¾çÂÊ¿¡¼­ ¸ðµÎ ¶Ñ·ÇÇÏ°Ô Àß ¾Ë·ÁÁø DRACH ¸ðƼÇÁ°¡ ³ªÅ¸³µ´Ù [20, 23]. ONTÀÇ 2020³â 4¿ù ¾÷µ¥ÀÌÆ®¿¡¼± RNA ¼­¿­ºÐ¼® Á¤È®µµÀÇ ÃÖºó°ªÀÌ 93%±îÁö »ó½ÂÇؼ­ º£À̽ºÄÝ ¿¡·¯¸¦ ÀÌ¿ëÇÒ ¶§ ¹Î°¨µµ°¡ ¸¹ÀÌ Çâ»óµÆ´Ù. »ç¿ëÇϱ⠽¬¿î ¼ÒÇÁÆ®¿þ¾î·Î ELIGOS, EpiNano µîÀÌ ³ª¿Í À־ »ùÇà ¦¸¸ °®ÃçÁö¸é µµÀÔÇØ º¼¸¸ÇÑ °¡Ä¡°¡ ÀÖ´Ù [20-22]. ±×·¸Áö¸¸, ¿¡·¯À²Àº º£À̽ºÄÝ ¼ÒÇÁÆ®¿þ¾î¿Í ¸ðµ¨, ¸ðÅÍ ´Ü¹éÁú, Æ÷¾î ´Ü¹éÁú µî ¼ö¸¹Àº ¿ä¼ÒµéÀÇ ¿µÇâÀ» ¹Þ±â ¶§¹®¿¡ ¿Ïº®ÇÏ°Ô °°Àº Á¶°ÇÀ¸·Î ó¸®µÈ »ùÇà ¦ÀÌ ¾Æ´Ï¸é ºñ±³°¡ ¾î·Æ°í, ½Ã¾à°ú ¼ÒÇÁÆ®¿þ¾îÀÇ º¯È­¿¡ µû¶ó ¼º´ÉÀÌ Å©°Ô ¿À¸£³»¸± ¼ö ÀÖ´Ù. ¶ÇÇÑ ¸®µå ´ÜÀ§¿¡¼­ ¿¡·¯°¡ °¡Áö´Â Á¤º¸ÀÇ ¾çÀÌ ÀÛ¾Æ ºÐÀÚ ´ÜÀ§ ºÐ¼®¿¡´Â ¶Ñ·ÇÇÑ ÇÑ°è°¡ ÀÖ´Ù.

ÀÚ¿¬ »óÅÂÀÇ RNA¸¦ ±×´ë·Î ºÐ¼®Çϸ鼭µµ ¼ö½ÄÀ» °ËÃâÇÏ´Â °ÍÀÌ ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®ÀÇ Æ¯º°ÇÑ Á¡ÀÌÁö¸¸, Àü·ù°¡ ¶Ñ·ÇÇÏ°Ô º¯ÇÏÁö ¾Ê¾Æ °ËÃâÀÌ ºÒ°¡´ÉÇÑ °æ¿ìµµ Á¸ÀçÇÑ´Ù. ƯÈ÷ mRNA¿¡¼­ÀÇ ±â´ÉÀÌ ¸¹Àº »ç¶÷ÀÇ °ü½ÉÀ» ²ô´Â m6A³ª ´ë»çÇ¥Áö ¹°Áú·Î °¡Àå ¸¹ÀÌ ¾²ÀÌ´Â 4-thiouridine (s4U)ÀÇ °æ¿ì, ¸¹Àº ¼öÀÇ ¹®¸Æ¿¡¼­ Ç¥ÁØ ¿°±â¿Í Å« Â÷ÀÌ ¾ø´Â ½ÅÈ£¸¦ ¸¸µç´Ù. ¿©±â¿¡ Àü·ù¿¡ ¿µÇâÀ» Á٠ǥÁö¸¦ Ãß°¡Çؼ­ ½ÅÈ£ Â÷À̸¦ ¶Ñ·ÇÇÏ°Ô ¸¸µé¾î¼­ ºÐ¼®ÇÒ ¼ö ÀÖ´Ù [24]. Ç¥Áö È¿À²ÀÌ ½Ã¾àÀÇ Á¢±Ù¼º¿¡ µû¶ó ´Ù¸¥ Ư¼ºÀ» È°¿ëÇÏ¿© ¼¼Æ÷ ³»¿¡¼­ ƯÁ¤ ´Ü¹éÁú°ú °¡±î¿î °÷¿¡ Á¸ÀçÇÏ´Â RNA¸¦ Ç¥ÁöÇϰųª RNAÀÇ 2Â÷ ±¸Á¶¿¡ µû¶ó ¿°±â½ÖÀ» ÀÌ·çÁö ¾Ê´Â ºÎºÐ¿¡ ³·Àº È¿À²·Î Ç¥ÁöÇؼ­ ¼¼Æ÷ ³» 2Â÷±¸Á¶¸¦ ±ä ¼­¿­ÀÇ ¹®¸ÆÀ» À¯ÁöÇÑ Ã¤·Î ºÐ¼®ÇÏ´Â µ¥¿¡ È°¿ëÇÒ ¼ö ÀÖ´Ù [25].

¹ßÀü ¹æÇâ°ú Àü¸Á

DNA ¼ö½ÄÀº ¾ÈÁ¤ÀûÀÎ ÂüÁ¶ ¸ðµ¨µéÀÌ °³¹ßµÇ¸é¼­ º£À̽ºÄÝ·¯¿¡¼­ ¼ö½Ä ¿°±âµéÀÌ Ç¥ÁØ ¿°±âó·³ Æ÷ÇԵǴ ¹æÇâÀ¸·Î ¹ßÀüÇÏ°í ÀÖ´Ù [26, 27]. RNA ¼ö½Äµµ Àå±âÀûÀ¸·Î´Â Ç¥ÁØ º£À̽ºÄÝ·¯¿¡ Æ÷ÇԵǰÚÁö¸¸, ÂüÁ¶ ¸ðµ¨À» ¸¸µå´Â µ¥ µå´Â ÀÚ¿øÀº ÈξÀ ¸¹ÀÌ µê¿¡µµ ºÒ±¸ÇÏ°í DNA¸¸Å­ ¼ö¿ä°¡ ¸¹Áö ¾Ê±â ¶§¹®¿¡ ´çºÐ°£Àº Áö±Ý°ú °°Àº »óȲÀÌ Áö¼ÓµÉ °ÍÀÌ´Ù. ¼­¿­ºÐ¼®±â´Â ´ë¿ë·® DNA ¼­¿­ºÐ¼®ÀÇ ±¤´ëÇÑ »ê¾÷¼ö¿ä ´ö¿¡ ³ôÀº º¹Àâµµ¿Í ¾ÐµµÀûÀΠ󸮴ɷ¿¡ ºñÇØ ºñ±³Àû Àú·ÅÇÑ °¡°ÝÀ¸·Î ´ë·®ÀÇ »ýÈ­ÇÐÀû ÃøÁ¤À» Á¦°øÇÏ°í ÀÖ´Ù. ³ª³ëÆ÷¾î ¼­¿­ºÐ¼®±â´Â ƯÈ÷ Á¤º¸°¡ dzºÎÇÑ Àü·ù ½ÅÈ£ÀÇ ÀáÀç·ÂÀÌ Å©±â ¶§¹®¿¡ ¾ÕÀ¸·Îµµ RNA ¼ö½Ä°ú RNA °áÇÕ, ´ë»ç µî¿¡¼­ Àü¿¡ ¾ËÁö ¸øÇß´ø »ý¸íÇö»óµéÀ» ¹ß°ßÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.

Âü°í¹®Çå

  • 1.

    UniProt Consortium, UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res, 2019. 47(D1): p. D506-D515.

  • 2.

    Lewis, C.J., T. Pan, and A. Kalsotra, RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol, 2017. 18(3): p. 202-210.

  • 3.

    Zhao, B.S., I.A. Roundtree, and C. He, Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol, 2017. 18(1): p. 31-42.

  • 4.

    Grozhik, A.V., et al., Antibody cross-reactivity accounts for widespread appearance of m(1)A in 5′UTRs. Nat Commun, 2019. 10(1): p. 5126.

  • 5.

    Carlile, T.M., et al., Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 2014. 515(7525): p. 143-6.

  • 6.

    Schwartz, S., et al., Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell, 2014. 159(1): p. 148-162.

  • 7.

    Hussain, S., et al., Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol, 2013. 14(11): p. 215.

  • 8.

    Linder, B., et al., Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods, 2015. 12(8): p. 767-72.

  • 9.

    Garcia-Campos, M.A., et al., Deciphering the "m(6)A Code" via Antibody-Independent Quantitative Profiling. Cell, 2019. 178(3): p. 731-747 e16.

  • 10.

    Amarasinghe, S.L., et al., Opportunities and challenges in long-read sequencing data analysis. Genome Biol, 2020. 21(1): p. 30.

  • 11.

    Simpson, J.T., et al., Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods, 2017. 14(4): p. 407-410.

  • 12.

    Stoiber, M., et al., De novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing. bioRxiv, 2017: p. 094672.

  • 13.

    Liu, Q., et al., Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat Commun, 2019. 10(1): p. 2449.

  • 14.

    McIntyre, A.B.R., et al., Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat Commun, 2019. 10(1): p. 579.

  • 15.

    Hennion, M., et al., FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing. Genome Biol, 2020. 21(1): p. 125.

  • 16.

    Muller, C.A., et al., Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods, 2019. 16(5): p. 429-436.

  • 17.

    Garalde, D.R., et al., Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods, 2018. 15(3): p. 201-206.

  • 18.

    Smith, A.M., et al., Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS One, 2019. 14(5): p. e0216709.

  • 19.

    Workman, R.E., et al., Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods, 2019. 16(12): p. 1297-1305.

  • 20.

    Liu, H., et al., Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun, 2019. 10(1): p. 4079.

  • 21.

    Jenjaroenpun, P., et al., Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res, 2020.

  • 22.

    Leger, A., et al., RNA modifications detection by comparative Nanopore direct RNA sequencing. bioRxiv, 2019: p. 843136.

  • 23.

    Parker, M.T., et al., Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. Elife, 2020. 9.

  • 24.

    Ramasamy, S., et al., Chemical probe-based Nanopore Sequencing to Selectively Assess the RNA modifications. bioRxiv, 2020: p. 2020.05.19.105338.

  • 25.

    Stephenson, W., et al., Direct detection of RNA modifications and structure using single molecule nanopore sequencing. bioRxiv, 2020: p. 2020.05.31.126763.

  • 26.

    Oxford Nanopore Technologies. Megalodon. Available from: https://github.com/nanoporetech/megalodon.

  • 27.

    Oxford Nanopore Technologies. Taiyaki. Available from: https://github.com/nanoporetech/taiyaki.

ÀúÀÚ¾à·Â

  • 1998-2007

    ¿¬¼¼´ëÇб³ ±â°èÀüÀÚ°øÇкÎ, Çлç (Á¤º¸»ê¾÷°øÇÐÀü°ø)

  • 2001-2005

    ¸®´ª½ºÄÚ¸®¾Æ(ÁÖ) ¼Ö·ç¼Ç°³¹ßÆÀ, »ç¿ø

  • 2007-2009

    KAIST ¹ÙÀÌ¿À¹×³ú°øÇаú, ¼®»ç

  • 2009-2014

    ¼­¿ï´ëÇб³ »ý¸í°úÇкÎ, ¹Ú»ç

  • 2014-2019

    ±âÃÊ°úÇבּ¸¿ø(IBS) RNA¿¬±¸´Ü, ¿¬±¸Á¶±³¼ö

  • 2019-ÇöÀç

    ¼­¿ï´ëÇб³ »ý¸í°úÇкÎ, Á¶±³¼ö