

Low Voltage Electron Microscope

fast | compact | powerful

FAST, COMPACT AND POWERFUL

The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

All the benefits of Low Voltage, no limitations

The LVEM 25 is a unique investigative tool which combines transmission TEM and STEM observation modes. Substantially lower accelerating voltages (ranging from 25 kV to 10 kV) than conventional TEM (typically 80–200 kV) provide substantially improved contrast on light elements with **conventionally prepared samples**. Low voltages result in increased electron scattering and enhanced contrast on biological, organic and light materials, without the need for staining.

Design: Imaging where you need it most

The LVEM 25 has an architecture that differs from traditional models. It can be installed in a lab, on a desktop or benchtop; almost anywhere electron imaging is needed. The system can even be supplied as a mobile work-station. The system has no special facilities requirements, no need for a dark room, cooling water, or special power. Ownership and maintenance of this system are greatly simplified.

COMPONENTS

Field Emission Gun:

The uniquely-designed Schottky type FEG (field emission gun) employed by the LVEM 25 has very high brightness and spatial coherence with a lifetime of several thousand hours. The high brightness and small virtual source of the electron gun allows transmission and scanning modes in a single instrument.

Permanent magnet lenses:

The LVEM 25 is designed to operate without any cooling. With conventional electron microscopes active cooling is required to remove considerable heat generated by electric current circulating in the electromagnetic lenses. The uniquely designed permanent magnet lenses used in the LVEM 25 require no cooling.

lon Getter pumping: clean vacuum, clean column, clean images

lon pumps are inherently dry, vibration-free and achieve very high vacuum levels. By making use of specially designed ion getter pumps, the LVEM 25 avoids all contamination in the sample space, resulting in stable imaging conditions and the absence of any artifacts.

Transmission Electron Microscopy: inline, two stage optics platform

Electron optics provide the initial stages of magnification where the initial image is formed on a YAG scintillator screen.

Light optics that are stable and reliable, further magnify the initial image from the YAG screen. Light transport from the fluorescent screen into the light optics is highly efficient.

Digital Imaging is done by means of a Peltier cooled CCD camera with 2048×2048 pixels mounted on the top of the LVEM 25. The image capture software is designed for acquisition, documentation, and analysis of high performance image data. Various image processing procedures, such as summing, live FFT and automatic contrast adjustment are available.

LVEM 25 for material sciences

Materials science is a complex field of study applying the different properties of matter to various areas of science, engineering, and nanotechnology. One of the most important tools available to scientists to investigate the structure of materials is the electron microscope.

The LVEM 25 electron microscope assists researchers in the field of materials science by providing high resolution, rapid imaging of their samples. The LVEM 25 shifts the cost-benefit balance by providing nanometer level resolution across TEM (Diffraction included) and STEM imaging modes. The LVEM 25 system combines all of this functionality into an easy-to-operate electron microscope.

The LVEM 25 is designed to excel across a broad range of applications such as nanomaterials, polymers, composites or blends, as well as biomaterials.

LVEM 25 for life sciences

Electron microscopy samples in the life sciences are normally a major challenge to image due to inherently low-contrast provided by their molecular composition. This is not the case when using the LVEM 25 in life sciences applications.

Low energy electrons interact much more strongly with the sample than high energy electrons of classical TEM, and are thus strongly scattered by organic materials, resulting in exceptional differentiation of features. The low accelerating voltage allows the system to provide high contrast results with no addition of contrast-enhancing staining procedures. The LVEM 25 enables imaging of classically prepared samples. High contrast results are acquired from samples in their inherent, natural state, although the system still provides for staining as an option.

Key application areas for the LVEM 25 include pathology, virology as well as drug discovery and delivery.

SPECIFICATIONS

OPERATION		ELECTRON OPTICS
Specimen size	standard φ 3.05mm grids	CONDENSER LENS
Time for sample exchange	approx 3 min	
IMAGING MODES		Condenser aperture
TEM		OBJECTIVE LENS
Nominal accelerating voltage	25 kV	Objective aperture
Resolving power	1.0 nm	PROJECTION LENS
Total magnification*	1,127–430,743×	
Field of view	100–0.25 μm	ELECTRON GUN
The smallest illuminated area	100 nm	Current density
Focal length	1.34 mm	Lifetime
C _s (spherical aberration coefficient)	1.03 mm	TEM IMAGE CAPTURE
C _c (chromatic aberration coefficient)	1.05 mm	Camera
$\boldsymbol{\alpha}_{_{theor}}$ (theoretical aperture angle)	1.2×10 ⁻² rad	Sensor size
* nominal (image 3¼×4")		Digitalization
ELECTRON DIFFRACTION		Pixel size
Minimum probe size	500 nm	Cooling
Camera length (binning 2×2)	2,000–7,000 pxl	SCAN IMAGE CAPTURE
Camera constant (binning 2×2)	15.51–54.28 pxl×nm	Monitor
STEM 15		Saving image
Nominal accelerating voltage	15 kV	Digitalization
Resolving power	1.3 nm	VACUUM
Maximum magnification	375,000×	AIRLOCK SYSTEM
Maximum field of view	80×80 μm	Diaphragm and turbomolecular pump
Focal length	0.95 mm	OBJECT SPACE
C _s (spherical aberration coefficient)	0.80 mm	lon getter pump
C _c (chromatic aberration coefficient)	0.85 mm	ELECTRON GUN
$\alpha_{_{theor}}$ (theoretical aperture angle)	1.4×10 ⁻² rad	lon getter pump
STEM 10		CONSUMPTION
Nominal accelerating voltage	10 kV	Control electronics in standby
Resolving power	1.0 nm	Control electronics
Maximum magnification	470,000×	Including airlock pumping system
Maximum field of view	105×105 μm	Camera
Focal length	0.75 mm	PC and monitor
C _s (spherical aberration coefficient)	0.64 mm	No cooling water for the microscope is requ
C _c (chromatic aberration coefficient)	0.72 mm	WEIGHTS AND DIMMENSIONS
$\alpha_{_{theor}}$ (theoretical aperture angle)	1.6×10 ⁻² rad	ELECTRON AND LIGHT OPTICS
LIGHT OPTICS		Weight
Objective Olympus M 40x	NA* 0.95	Dimensions
Objective Olympus M 20x	NA* 0.75	CONTROL ELECTRONICS
Objective Olympus M 4x	NA* 0.13	Weight
*numerical aperture		Dimensions

CONDENSER LENS	magnetostatic		
	electrostatic		
Condenser aperture	Φ 50, 50, 30 μm		
OBJECTIVE LENS	magnetostatic		
Objective aperture	Φ 50, 50, 30 μm		
PROJECTION LENS	electrostatic		
	double lens		
ELECTRON GUN	SE Cathode ZrO/W[100]		
Current density	0.3 mAsr ¹		
Lifetime	>2,000 hours		
EM IMAGE CAPTURE			
Camera	Retiga 4000R CCD		
Sensor size	2048×2048 pixels		
Digitalization	12 bits		
Pixel size	7.4×7.4 μm		
Cooling	Peltier cooling		
SCAN IMAGE CAPTURE			
Monitor	512×512, 1024×1024, 2048×2048		
Saving image	up to 2048×2048 pixels		
Digitalization	8 bits		
ACUUM			
AIRLOCK SYSTEM			
Diaphragm and turbomolecular pump	10 ⁻⁵ mbar		
DBJECT SPACE			
lon getter pump	10 ⁻⁸ mbar		
ELECTRON GUN			
lon getter pump	10 ⁻⁹ mbar		
CONSUMPTION			
Control electronics in standby	25 VA		
Control electronics	350 VA		
ncluding airlock pumping system	550 VA		
Camera	24 VA		
PC and monitor	500 VA		
to cooling water for the microscope is required			
VEIGHTS AND DIMMENSIONS			
LECTRON AND LIGHT OPTICS			
Weight	80 kg		
Weight Dimensions	80 kg 106×63×61 cm		
Weight Dimensions CONTROL ELECTRONICS	80 kg 106×63×61 cm		
Weight Dimensions CONTROL ELECTRONICS Weight	80 kg 106×63×61 cm 80 kg		
Weight Dimensions CONTROL ELECTRONICS Weight Dimensions	80 kg 106×63×61 cm 80 kg 110×63×67 cm		

DISTRIBUTION

The LVEM 25 is supported globally by sales and service offices in local markets. Please consult our website for the distributor in your country. You can also contact us directly for any questions you may have or to be referred to your distributor.

DELONG INSTRUMENTS a.s.

Palackého třída 153b 612 00 Brno Czech Republic +420–549 123 509 +420–549 123 511 info@dicomps.com www.dicomps.com

DELONG AMERICA

4020 Rue St-Ambroise Suite #473 Montreal Quebec Canada H4C 2C7 1-866-335-6648 (Inside US & Canada) 1-514-904-1202 (International) info@lv-em.com www.lv-em.com

This development project E!6143 MiniTEM has in part been funded by Eurostars.

Please be sure to visit our websites. For more information please send us an email.

