ÃÖ±Ù °úÇÐ ¼Ò½Ä

ÀÌÀçö
À¯µµ¸¸´ÉÁٱ⼼Æ÷ ±â¹Ý ³ú ¿À°¡³ëÀ̵带 ÀÌ¿ëÇÑ Áúȯ ¸ðµ¨¸µ ¿¬±¸
ÀÌÀçö ¼º±Õ°ü´ëÇб³ ¾àÇдëÇÐ
¸ÞÀÏ jaecheol@skku.edu

¼­·Ð

³ú-½Å°æ ÁúȯÀÇ ±Ùº»ÀûÀÎ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇÏ´Â °ÍÀº Ä¡·áÁ¦ °³¹ß¿¡ À־ °¡Àå Áß¿äÇÑ ¹®Á¦ÀÌ´Ù. »ç¶÷ÀÇ ³ú´Â ´Ù¾çÇÑ ±â´ÉÀ» °¡Áø ¼¼Æ÷¿Í À̵鰣ÀÇ º¹ÀâÇÑ network¿¡ ÀÇÇÏ¿© ±¸¼ºµÇ¾î ÀÖÀ¸¸ç, ȯ°æ, À¯ÀüÇü µî ¿©·¯ ¿äÀεéÀÌ º¹ÀâÇÏ°Ô ÀÛ¿ëÇÏ¿© ³ú-½Å°æÁúȯÀÌ ¹ß»ýÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ÃÖ±Ù ±Þ¼Óµµ·Î ¹ßÀüÇÏ°í ÀÖ´Â ³ú-½Å°æ°èÀÇ ´Ù¾çÇÑ ¿¬±¸¿¡µµ ºÒ±¸ÇÏ°í ¾ÆÁ÷±îÁö ¸¹Àº ³ú-½Å°æ Áúȯġ·áÁ¦ÀÇ °³¹ß¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ´Â º¹ÀâÇÑ ³ú-½Å°æ ³×Æ®¿öÅ©ÀÇ ÀÌÇظ¦ À§ÇÑ ´Ù¾çÇÑ Á¢±Ù¹ýÀÌ ÇÊ¿äÇÏ´Ù°í º¼ ¼ö ÀÖ´Ù [1-2].
ÀÌ·¯ÇÑ ½Ãµµ·Î ÁøÇàµÈ ¿©·¯ genome-wide association studies (GWAS)¿¬±¸´Â ³ú-½Å°æ Áúȯ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ´Ù¾çÇÑ À¯ÀüÀûÀÎ º¯À̸¦ º¸°í ÇÏ¿´´Ù. GWAS µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÇÑ Áúº´ ¸ðµ¨¸µÀº À¯Àü º¯ÀÌ¿Í ³ú Áúȯ »çÀÌÀÇ »ó°ü °ü°è¸¦ ºñ±³Àû Á¤¹ÐÇÏ°Ô Á¦½ÃÇÒ ¼ö ÀÖ¾úÀ¸¸ç, ÃÖ±Ù ³ú ÁúȯÀÇ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇÏ´Â ÇʼöÀûÀÎ ±â¼ú·Î ÀÚ¸® Àâ¾Ò´Ù [3-4]. ÀÌ·¯ÇÑ ½Ãµµ¿Í ´õºÒ¾î ÃÖ±Ù ³ú-½Å°æ Áúȯ ¿¬±¸ÀÇ »õ·Î¿î Áúȯ ¸ðµ¨·Î ȯÀÚ Æ¯ÀÌÀûÀÎ À¯µµ¸¸´ÉÁٱ⼼Æ÷ (induced pluripotent stem cells, iPSCs)¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â 2D ´º·± ºÐÈ­ ¹× ³ú ¿À°¡³ëÀ̵尡 ÁÖ¸ñ¹Þ°í ÀÖ´Ù. ÀϹÝÀûÀ¸·Î Áúȯ µ¿¹° ¸ðµ¨Àº À¯ÀüÀû µ¹¿¬º¯ÀÌ¿¡ ÀÇÇØ À¯¹ßµÇ´Â ³ú-½Å°æÁúȯÀÇ ¸ðµ¨¿¡ ÁÖ·Î »ç¿ëµÇ¾úÀ¸³ª, ¼³Ä¡·ùÀÇ °æ¿ì Àΰ£°ú ´Ù¸¥ ³ú-½Å°æ ³×Æ®À§Å© ±¸Á¶ ¹× ¹ß´Þ °úÁ¤ µî¿¡ ÀÇÇÏ¿© Á¤È®ÇÑ Àΰ£ÀÇ ³ú Áúȯ Ç¥ÇöÇüÀÇ ÀçÇö¿¡ ¾î·Á¿òÀÌ º¸°í µÇ°í ÀÖ´Ù [5]. ¶ÇÇÑ ½ÇÁ¦ ȯÀÚÀÇ Á¶Á÷ µîÀÇ ½Ã·á¸¦ »ç¿ëÇÏ´Â °æ¿ì¿¡µµ ȯÀÚ Á¶Á÷ÀÇ °¡¿ë¼º, Á¶ÀÛÀÇ ¾î·Á¿ò, À±¸®ÀûÀÎ ¹®Á¦µéÀÌ Á¦½ÃµÇ°í ÀÖ´Ù [6].
ÀÌ·¯ÇÑ ¹®Á¦Á¡À» ÇØ°áÇϱâ À§ÇÏ¿© ȯÀÚÀÇ iPSC¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â 2D ´º·± ºÐÈ­ ¹× ³ú ¿À°¡³ëÀ̵尡 ±× ´ë¾ÈÀ¸·Î ¿©°ÜÁö°í ÀÖÀ¸¸ç ±¤¹üÀ§ÇÑ ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ´Ù. À̹ø ¸®ºä¿¡¼­´Â ¿©·¯ À¯Àü¼º ³ú-½Å°æÁúȯÀÇ ¸ðµ¨¸µÀ» À§ÇÏ¿© »ç¿ëµÇ°í ÀÖ´Â ³ú ¿À°¡³ëÀ̵忡 ´ëÇÑ ¿©·¯ Á¢±Ù¹ý¿¡ ´ëÇÏ¿© ´Ù·çµµ·Ï ÇÑ´Ù.

³ú Áúȯ ¿¬±¸¸¦ À§ÇÑ 2D ºÐÈ­ ¹× 3D organoid ½Ã½ºÅÛ

Àΰ£ iPSC¸¦ »ç¿ëÇÑ ´º·± ºÐÈ­¿¡ ´ëÇÑ Ã¹ ¹ø° ¿¬±¸´Â 2001³â Thomson ±×·ì¿¡¼­ ÁøÇàµÇ¾ú´Ù [7]. ÇØ´ç ¿¬±¸¿¡¼­´Â iPSC·ÎºÎÅÍ Á¦ÀÛµÈ embryonic body (EB)¿¡ fibroblast growth factor 2 (FGF-2)󸮽à neural-tube¸¦ Çü¼ºÇÏ°í ÀÖ´Â neural rosette°¡ »ý¼ºµÇ´Â °ÍÀ» °üÂûÇÏ¿´´Ù. ÀÌÈÄ ¿©·¯ ¿¬±¸¸¦ ÅëÇÏ¿© ÀÌ·¯ÇÑ rosette°¡ ventricular radial glial cell, intermediate progenitor ¹× outer radial glial cellµîÀ¸·Î µÑ·¯½ÎÀÎ epithelialÀÇ ±¸Á¶¸¦ Çü¼ºÇÒ ¼ö ÀÖ´Â °ÍÀ» º¸¿© ÁÖ¾úÀ¸¸ç, ÀÌ·¯ÇÑ ±¸Á¶´Â Àΰ£ÀÇ ³ú¿¡¼­ º¼ ¼ö ÀÖ´Â ventricular zone (VZ) ¹× subventricular zone (SVZ)°ú À¯»çÇÔÀ» È®ÀÎÇÏ¿´´Ù [8-9]. ÀÌ·¯ÇÑ ºÐÈ­ ÇÁ·ÎÅäÄÝÀº Á¡Â÷ ¼¼ºÐÈ­µÇ¾î ¼¼·ÎÅä´Ñ ´º·±, µµÆĹΠ¼º ´º·±, ¿îµ¿ ´º·±, GABA ¼º ´º·±, °¨°¢ ´º·± ¹× microglia µîÀÇ Æ¯Á¤ ¼¼Æ÷·Î ºÐÈ­µÇ´Â ÇÁ·ÎÅäÄݵéÀÌ È®¸³µÇ¾ú´Ù.
ÀÌ¿Í °°Àº 2D ¹è¾ç ±â¹ÝÀÇ ´Ù¾çÇÑ ºÐÈ­ ±â¼úÀº ±âÁ¸ÀÇ ³ú-½Å°æÁúȯÀÇ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇϴµ¥ ¸¹Àº ±â¿©¸¦ ÇßÁö¸¸, Àΰ£ ³úÀÇ º¹À⼺À» ÆľÇÇÏ´Â µ¥´Â ÇÑ°è°¡ ÀÖ¾ú´Ù. ƯÈ÷ 2D ±â¹ÝÀÇ ¹è¾ç±â¼úÀº ³úÀÇ Æ¯Á¤ ¿µ¿ª¸¸À» ÀçÇöÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ´Ù¾çÇÑ ½Å°æ¼¼Æ÷µéÀÇ ³×Æ®À§Å©¸¦ ÆľÇÇϱ⿡´Â ¾î·Á¿òÀÌ ÀÖ¾ú´Ù. ¹«¾ùº¸´Ù 2D ¹è¾çÀ» À§Çؼ­´Â ÀÎÀ§ÀûÀÎ ¼¼Æ÷ ¿Ü ±âÁú (extra cell matrix, ECM)À» ÄÚÆÃÇÒ ÇÊ¿ä°¡ ÀÖ¾úÀ¸¸ç, ÀÌ¿¡ µû¸¥ ¼¼Æ÷¿Í ECM°£ÀÇ »óÈ£ÀÛ¿ëÀº ½ÇÁ¦ Á¶Á÷¿¡¼­ º¸¿©ÁÖ´Â ¼¼Æ÷-¼¼Æ÷ »óÈ£ÀÛ¿ë°ú´Â ÀϺΠ»óÀÌÇÑ Æ¯¼ºÀ» º¸ÀÌ°í ÀÖ´Ù.
ÀÌ·¯ÇÑ Á¡À» ±Øº¹Çϱâ À§ÇÏ¿© intestinal (³»¹è¿±) ¹× kidney (Á߹迱) ¿À°¡³ëÀ̵åµîÀÇ ±âÁ¸¿¡ °³¹ßµÈ ºÐÈ­ ±â¼úÀ» ÂüÁ¶ÇÏ¿© ³ú ¿À°¡³ëÀÌµå ±â¼úÀÌ °³¹ßµÇ¾ú´Ù. ´ÜÁö ³»¹è¿±/Á߹迱ÀÇ ¿À°¡³ëÀ̵å¿Í´Â ´Ù¸£°Ô ³ú (¿Ü¹è¿±)¿À°¡³ëÀ̵å´Â ¼ºÀå½ÅÈ£ÀÎÀÚ(growth factor)¸¦ Á¦°Å·Î ºÎÅÍ ½ÃÀÛµÊÀÌ ¾Ë·ÁÁ³´Ù. ÀϹÝÀûÀ¸·Î ³ú ¿À°¡³ëÀÌµå ºÐÈ­´Â ÆÐÅÏÈ­ ¹æ½Ä¿¡ µû¶ó µÎ°¡Áö Á¢±Ù¹ýÀ» º¸ÀδÙ. ¸ÕÀú ¿ÜºÎÀÇ Á¶Àý ÀÎÀÚ¸¦ ÃÖ¼ÒÈ­ ÇÏ´Â ¹æ¹ýÀ¸·Î À̸¦ ÅëÇÏ¿© self-guided ¿À°¡³ëÀ̵å ÇüŸ¦ Á¦ÀÛÇÏ´Â ¹æ¹ýÀÌ´Ù. ´Ù¸¥ ¹æ¹ýÀ¸·Î´Â ¿ÜÀμº ÆäÅÍ´× ¹æ¹ýÀ¸·Î BMP, FGF, Nodal ¹× Sonic HedgehogµîÀÇ ¿ÜÀμº ÀÎÀÚµéÀ» Ãß°¡ÇÏ¿© ¿øÇϴ ƯÁ¤ ¿µ¿ªÀÇ ¿À°¡³ëÀ̵带 Á¦ÀÛÇÏ´Â ¹æ½ÄÀÌ´Ù [10]. Self-guided ¿À°¡³ëÀ̵åÀÇ °æ¿ì´Â Knoblich ±×·ì¿¡¼­ óÀ½ ½ÃµµµÇ¾úÀ¸¸ç, 3D neuroepithelial spheroids¸¦ matrigel¿¡ embedded½ÃŲÈÄ hypoxia ¹× spinning ȯ°æ¿¡¼­ Á¦ÀÛÇÏ´Â ¹æ½ÄÀ¸·Î ½ÇÁ¦ Àΰ£ ³úÀÇ ¹ß´Þ °úÁ¤À» ¸ð¹æÇÏ¿´´Ù [11]. ¿ÜÀμº ÆäÅÍ´× ¹æ¹ýÀº Sasai±×·ì ¹× Pasca±×·ì¿¡¼­ óÀ½ ½ÃµµµÇ¾úÀ¸¸ç, ´Ù¾çÇÑ ¿ÜÀμº ÀÎÀÚ¸¦ »ç¿ëÇÏ¿© ¿øÇÏ´Â ³ú ¿µ¿ªÀ» Á¦ÀÛÇÏ´Â ¹æ¹ýÀÌ´Ù [12-13]. ÀÌ¿Í °°Àº ³ú ¿À°¡³ëÀÌµå ±â¼úÀº Ãֱ٠ȯÀÚƯÀÌÀûÀÎ iPSC¿Í Á¢¸ñµÇ¾î down ÁõÈıº, Rett ÁõÈıº µîÀÇ ´Ù¾çÇÑ ³ú-½Å°æ°è Áúȯ¿¡ Àû¿ëµÇ°í ÀÖ´Ù (±×¸² 1). ¶ÇÇÑ ÃÖ±Ù¿¡´Â À¯ÀüÀÚ°¡À§ ±â¼úÀ» ÀÌ¿ëÇÏ¿© Á» ´õ Á¤¹ÐÇÑ Áúȯ ¸ðµ¨¸µÀÌ °¡´ÉÇØÁö°í ÀÖÀ¸¸ç, ±âÁ¸¿¡ ¹àÇôÁöÁö ¾Ê¾Ò´ø ´Ù¾çÇÑ Ä¡·á Ÿ°ÙÀ» Á¦½ÃÇÒ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ´Ù.

³ú ¿À°¡³ëÀ̵åÀÇ ÇÑ°è¿Í °¡´É¼º

³ú ¿À°¡³ëÀÌµå ±â¼úÀº ±âÁ¸ÀÇ 2D ¹è¾ç ¹× µ¿¹°¸ðµ¨¿¡¼­ Á¦°øÇÒ ¼ö ¾ø¾ú´ø Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÏÁö¸¸ ±Øº¹ÇØ¾ß ÇÒ ¸î °¡Áö ÇÑ°èÁ¡ÀÌ Á¸ÀçÇÑ´Ù. ù°, ½ÇÁ¦ Àΰ£ ³úÀÇ º¹À⼺°ú ÀçÇö¼ºÀ» ¸ðµÎ ¸¸Á·ÇÏ´Â ³ú ¿À°¡³ëÀ̵带 Á¦ÀÛÇϱ⠾î·Á¿î Á¡ÀÌ´Ù. ÀϹÝÀûÀ¸·Î º¹À⼺À» ÃÖ´ëÇÑ ±¸ÇöÇϱâ À§Çؼ­´Â ´Ù¾çÇÑ ¹æ½ÄÀÇ ¿ÜºÎÀÎÀÚ¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â ¿ÜÀμº ÆäÅÍ´× ¹æ½ÄÀÌ Àû¿ëµÇ°í ÀÖÀ¸³ª, ÀÌ´Â ÇÊ¿¬ÀûÀ¸·Î ¹èÄ¡°£ÀÇ Å« º¯µ¿¼ºÀ» À¯¹ßÇÑ´Ù [14]. ÀÌ¿Í´Â ¹Ý´ë·Î ƯÁ¤ ºÎÀ§¸¸À» ¸ð¹æÇÏ´Â ³ú ¿À°¡³ëÀ̵åÀÇ °æ¿ì ¹èÄ¡°£ÀÇ ³ôÀº ÀçÇö¼ºÀ» º¸¿©ÁÖÁö¸¸, ³úÀÇ º¹ÀâÇÑ ¿µ¿ªµéÀ» ÀûÀýÇÏ°Ô Ç¥ÇöÇÒ ¼ö ¾ø¾ú´Ù [15].
´Ù¸¥ ÇÑ°è´Â ³ú ¿À°¡³ëÀ̵åÀÇ Å©±â°¡ Ä¿ÁüÀ¸·Î½á ¹ß»ýÇÒ ¼ö ÀÖ´Â ºÒÃæºÐÇÑ »ê¼Ò ¹× ¿µ¾ç¼Ò °ø±ÞÀÌ´Ù. ÇöÀç °³¹ßµÈ ´ëºÎºÐÀÇ ÇÁ·ÎÅäÄÝÀÇ °æ¿ì ÀϹÝÀûÀÎ È®»ê¿¡ ÀÇÇÑ »ê¼Ò ¹× ¿µ¾ç¼Ò °ø±Þ ¹æ¹ýÀ» »ç¿ëÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ³ú ¿À°¡³ëÀ̵å Áß¾Ó ºÎºÐ¿¡ ÃæºÐÇÑ °ø±ÞÀÌ ¾î·Á¿ö Á¶Á÷ÀÇ ±«»ç¸¦ À¯¹ßÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ÃÖ±Ù¿¡´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÏ¿© Ç÷°ü µîÀÇ ´Ù¸¥ ¼¼Æ÷¿ÍÀÇ °áÇÕÀ» À¯µµÇÏ´Â ÇÁ·ÎÅäÄÝÀÌ °³¹ßµÇ°í ÀÖ´Ù [16].

°á·Ð

³ú ¿À°¡³ëÀÌµå ±â¼úÀÇ °³¹ßÀº in vitro ½Ã½ºÅÛ¿¡¼­ Àΰ£ ³úÀÇ ¹ß´Þ °úÁ¤°ú ³ú-½Å°æ Áúȯ¿¡ ´ëÇÑ º´ÀÎÀ» °üÂûÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±âȸ¸¦ Á¦°øÇÏ¿´´Ù. ÃÖÃÊÀÇ ³ú ¿À°¡³ëÀ̵尡 °³¹ßµÈ ÈÄ ¸Å¿ì ªÀº ½Ã°£¿¡ ±¤¹üÀ§ÇÑ ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ³ú-½Å°æ Áúȯ ¿¬±¸¿¡ ÇÙ½É ±â¼ú·Î ÀÚ¸®Àâ°í ÀÖ´Ù. ¾ÆÁ÷Àº ¸î °¡Áö ±â¼úÀûÀÎ ÇÑ°è·Î ÀÎÇÏ¿© ¸ðµç Áúȯ¿¡ Àû¿ëµÉ ¼ö ¾øÀ¸³ª, ³ª³ë ±â¼ú, »ýü Àç·á µîÀÇ ´Ù¾çÇÑ ¹æ½Ä°úÀÇ Á¢¸ñÀ» ÅëÇÏ¿© ÀÌ·¯ÇÑ ¹®Á¦Á¡À» ÇØ°áÇϱâ À§ÇÑ ¿¬±¸µéÀÌ ÁøÇàµÇ°í ÀÖ´Ù. ¸ÖÁö ¾ÊÀº ¹Ì·¡¿¡ ³ú ¿À°¡³ëÀÌµå ±â¼úÀÌ ±âÁ¸ÀÇ ½Ã½ºÅÛÀ» ÅëÇÏ¿© È®ÀÎÇÏÁö ¸øÇÏ¿´´ø ³ú-½Å°æ ÁúȯÀÇ ¸ÞÄ¿´ÏÁòÀ» ±Ô¸íÇÏ°í Ä¡·á Ÿ°ÙÀ» Á¦½ÃÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÑ´Ù.

±×¸²1. ´Ù¾çÇÑ ³ú-½Å°æÁúȯÀÇ ³ú ¿À°¡³ëÀ̵带 ÀÌ¿ëÇÑ ¸ðµ¨¸µ
±×¸²1. ´Ù¾çÇÑ ³ú-½Å°æÁúȯÀÇ ³ú ¿À°¡³ëÀ̵带 ÀÌ¿ëÇÑ ¸ðµ¨¸µ

Âü°í¹®Çå

  • 1

    Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489-1494. https://doi.org/10.1126/science.aaa8954

  • 2

    Llinares-Benadero C, Borrell V (2019) Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nature Reviews Neuroscience 20:161-176. https://doi.org/10.1038/s41583-018-0112-2

  • 3

    Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537-551. https://doi.org/10.1038/nrg3240

  • 4

    Grove J, et al. (2019) Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 51:431-444. https://doi.org/10.1038/s41588-019-0344-8

  • 5

    Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9:993-999. https://doi.org/10.1038/ncb437

  • 6

    Quadrato G, Brown J, Arlotta P (2016) The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine 22:1220-1228. https://doi.org/10.1038/nm.4214

  • 7

    Zhang S-C, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129-1133. https://doi.org/10.1038/nbt1201-1129

  • 8

    Shi Y, Kirwan P, Smith J, Robinson HPC, Livesey FJ (2012b) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience 15:477-486. https://doi.org/10.1038/nn.3041

  • 9

    Edri R, Yaffe Y, Ziller MJ, Mutukula N, Volkman R, David E, Jacob-Hirsch J, Malcov H, Levy C, Rechavi G, Gat-Viks I, Meissner A, Elkabetz Y (2015) Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat Commun 6:6500. https://doi.org/10.1038/ncomms7500

  • 10

    Clevers H (2016) Modeling Development and Disease with Organoids. Cell 165:1586-1597. https://doi.org/10.1016/j.cell.2016.05.082

  • 11

    Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329-2340. https://doi.org/10.1038/nprot.2014.158

  • 12

    Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. PNAS 110:20284-20289. https://doi.org/10.1073/pnas.1315710110

  • 13

    Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park J-Y, O’Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods 12:671–678. https://doi.org/10.1038/nmeth.3415

  • 14

    Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373-379. https://doi.org/10.1038/nature12517

  • 15

    Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, Levin JZ, Arlotta P (2019) Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570:523. https://doi.org/10.1038/s41586-019-1289-x

  • 16

    van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Current Opinion in Biotechnology 35:118-126. https://doi.org/10.1016/j.copbio.2015.05.002

ÀúÀÚ¾à·Â

  • 2001-2005

    ¼º±Õ°ü´ëÇб³ ¾àÇдëÇÐ, Çлç

  • 2005-2007

    ¼º±Õ°ü´ëÇб³ ¾àÇдëÇÐ, ¼®»ç

  • 2007-2011

    ¼º±Õ°ü´ëÇб³ ¾àÇдëÇÐ, ¹Ú»ç

  • 2012-2018

    Stanford University School of Medicine, Post-doc/¿¬±¸±³¼ö

  • 2018-ÇöÀç

    ¼º±Õ°ü´ëÇб³ ¾àÇдëÇÐ, Á¶±³¼ö

  • 2020-ÇöÀç

    Imnewrun Biosciences Inc, ºÎ»çÀå/ÆÀ¸®´õ