ÃÖ±Ù °úÇÐ ¼Ò½Ä

À̳²°æ
´ÜÀÏ ¼¼Æ÷ ´Ü¹éü Áú·®ºÐ¼® ±â¼úÀÇ °³¹ß ÇöȲ ¹× Àü¸Á
¹ÚÁØÈ£ Â÷ÀÇ°úÇдëÇб³ ÀÇÇÐÀü¹®´ëÇпø ¾à¸®Çб³½Ç
¸ÞÀÏ jpark@cha.ac.kr

[¼­·Ð]

  ¿À¹Í½ºÇÐ(Omics)Àº »ý¸íü ³» º¹ÀâÇÏ°Ô ¾ôÈù »ýºÐÀÚ ³×Æ®¿öÅ©ÀÇ ÃÑüÀûÀÎ ºÐ¼®À» °¡´ÉÄÉÇÑ´Ù´Â ÀÌÁ¡À¸·Î ÀÎÇØ ´Ù¾çÇÑ ºÐÀÚ»ý¹°ÇÐ ¿¬±¸¿¡ Àû±ØÀûÀ¸·Î È°¿ëµÇ¾î¿Ô´Ù.[1] ¿À¹Í½ºÇÐÀº ´ëü·Î ¼ö¸¹Àº »ýºÐÀÚÀÇ Á¤¼º ¹× Á¤·® ºÐ¼®À» ÅëÇØ ±× Áß À¯ÀǹÌÇÑ Å¸±êÀ» ¼±Á¤ÇÏ´Â ÇÏÇâ½Ä(Top-down) Á¢±Ù¹ýÀ¸·Î ¼¼Æ÷ ´ë»ç¿¡ ´ëÇÑ ÀÌÇصµ¸¦ ³ôÀ̰ųª, »õ·Î¿î ¾à¹° Ÿ±êÀ» ¹ß±¼Çϰųª, Ÿ±êÀ» Àç¼³Á¤(Drug repurposing)ÇØ¿Ô´Ù.[2] »ýü Á¶Á÷ ³» ºÐÀÚ Æ¯¼ºÀ» ¹àÈ÷°íÀÚ ¼öÇàµÇ´Â ¿À¹Í½ºÇÐ ¿¬±¸ÀÇ °æ¿ì, °ü½É Áö¿ª(Region of interest)ÀÇ ¸ðµç ¼¼Æ÷¸¦ °³º° ´ë»óÀ¸·Î ¼³Á¤ÇÏ¿© ¼öÇàµÇ´Â °ÍÀÌ ÀÌ»óÀûÀÏ °ÍÀ̳ª, ÀÌ´Â ±â¼úÀû ÇÑ°è·Î ÀÎÇØ ºÒ°¡´É¿¡ °¡±î¿ü´Ù. ´ë¾ÈÀ¸·Î, ÃÖ´ëÇÑ ¼¼ºÎ Á¶Á÷À» ³ª´² ÀýÁ¦Çϰųª µ¿ÀÏÇÑ Á¾·ùÀÇ ¼¼Æ÷¸¦ Áõ½Ä½ÃÄÑ ¿À¹Í½º µ¥ÀÌÅ͸¦ ¾ò´Â ¹æ½ÄÀ¸·Î ¿¬±¸°¡ ¼öÇàµÇ¾î¿Ô´Ù. ±×·¯³ª Deep sequencing ±â¼úÀÇ ¹ß´Þ°ú ÇÔ²² º¸´Ù È¿À²ÀÌ ³ôÀº ´ÜÀÏ ¼¼Æ÷ ºÐ·ù ¹× ºÐ¼® ±â¼úÀÌ °³¹ßµÇ¸é¼­ ÀÌ¿Í °°Àº ¿¬±¸ ¹æ¹ýÀÇ ÇÑ°èÁ¡ÀÌ µå·¯³ª±â ½ÃÀÛÇß´Ù. ¿¹ÄÁ´ë, Çü±¤Ç¥Áö¼¼Æ÷ºÐ·ù¸¦ ÅëÇØ ºÐ¸®µÈ Microglia »çÀÌ¿¡¼­ ¹ß°ßµÈ ºÐÀÚÀû ¼¼Æ÷ ´Ù¾ç¼º(Cellular diversity)[3]°ú ¾Ï Á¶Á÷¿¡¼­ ¹ß°ßµÇ´Â Á¾¾ç ³» ÀÌÁú¼º(Intratumor heterogeneity)[4] µîÀÌ ´ëµÎµÇ¾î Çа迡 ¹ßÇ¥µÇ±â ½ÃÀÛÇÑ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ È帧¿¡ µû¶ó ÃÖ±ÙÀÇ ¿¬±¸ÀÚµéÀº ¿©·¯ ´ÜÀÏ ¼¼Æ÷µé·ÎºÎÅÍ ¾ò¾îÁø Á¤º¸°¡ ÇÕÃÄÁø, ±×·Î ÀÎÇØ Áß¿äÇÑ Á¤º¸°¡ Èñ¼®µÇ¾úÀ» °¡´É¼ºÀÌ ³ôÀº µ¥ÀÌÅÍ¿¡¼­ ¹þ¾î³ª ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ ¼öÁýÇÑ ¿À¹Í½º µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ·Á´Â ³ë·ÂÀ» °æÁÖÇÏ°í ÀÖ´Ù.

  ´Ù¾çÇÑ ¿À¹Í½ºÇÐ Áß ´Ü¹éÁúÀÇ ÃÑü, Áï ´Ü¹éüÀÇ ¹ßÇö Á¤º¸¸¦ Á¦°øÇÏ´Â ´Ü¹éüÇÐÀÇ ´ÜÀÏ ¼¼Æ÷ ºÐ¼®¿¡ÀÇ Àû¿ë ¿ª½Ã È°¹ßÈ÷ ½ÃµµµÇ°í ÀÖ´Ù. Cytometry by time of flight(CyTOF) µî Ç×ü¸¦ ÀÌ¿ëÇÑ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐÀº ³ôÀº ¹Î°¨µµ¸¦ °®°í Àֱ⿡ ´ÜÀÏ ¼¼Æ÷ ½Ã·á¿¡ ¿ì¼±ÀûÀ¸·Î Àû¿ëµÇ¾úÀ¸³ª, ÀÌ ¹æ¹ýÀº ¿¬±¸ÀÚ°¡ »çÀü¿¡ ¼³Á¤ÇÑ Á¦ÇÑÀûÀÎ ¼öÀÇ ´Ü¹éÁú¸¸À» ´ë»óÀ¸·Î ÇÏ¸ç ¼³Á¤ Ÿ±ê¿¡ ´ëÇÑ ÀûÇÕÇÑ Ç×ü°¡ È®º¸µÇ¾î¾ß ÇÑ´Ù´Â ÇÑ°èÁ¡À» °®´Â´Ù.[5] ¹Ý¸é, Liquid chromatography-mass spectrometry (LC-MS) ±â¹ÝÀÇ ´Ü¹éüÇÐÀº ºÐ¼® ¹Î°¨µµ ¹üÀ§ ³» ¸ðµç ´Ü¹éÁúÀÇ Á¸Àç·®À» ÃøÁ¤ÇѴٴ Ư¡À¸·Î ÀÎÇØ ´Ù¾çÇÑ ¼¼Æ÷ ¾ÆÇü(Cellular subtype)ÀÇ ºÐÀÚÀû Ư¼ºÀ» ±Ô¸íÇÏ°í »õ·Î¿î ¾ÆÇüÀ» ¹ß±¼ÇÏ·Á´Â ´ÜÀÏ ¼¼Æ÷ ¿À¹Í½ºÇÐÀÇ ¸ñÀû¿¡ º¸´Ù ºÎÇÕÇÑ´Ù.[6, 7] µû¶ó¼­ ´ÜÀÏ ¼¼Æ÷ÀÇ LC-MS ºÐ¼®ÀÌ ´ÜÀÏ ¼¼Æ÷¸¦ ±¸¼ºÇÏ´Â ¹ÌÁöÀÇ ´Ü¹éü Á¤º¸¸¦ Á¦°øÇÒ °ÍÀ̶ó´Â ±â´ë°¡ ³ô¾ÆÁü¿¡ µû¶ó ±â¼ú ÇöȲ¿¡ ¸¹Àº °ü½ÉÀÌ ÁýÁߵǰí ÀÖ´Ù. º» ±â°í¹®¿¡¼­´Â ÃֽŠLC-MS ±â¹Ý ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐÀÇ ´ëÇ¥ÀûÀÎ ±â¼úµéÀ» ¾Ë¾Æº¸°í, ¾ÕÀ¸·ÎÀÇ Àü¸Á¿¡ ´ëÇØ ³íÇÏ°íÀÚ ÇÑ´Ù.

✓ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ±â¼ú ÇöȲ

  ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐÀº ´Ü¹éüÀÇ LC-MS ºÐ¼®¿¡ ÃæºÐÇÑ ´Ü¹éÁúÀÇ ¾çÀ» È®º¸ÇÒ ¼ö ÀÖ´Â Å« ¼¼Æ÷¿¡¼­ºÎÅÍ ½ÃÀ۵Ǿú´Ù. Hughes µîÀº Magnetic beadÀÇ Ç¥¸é 󸮸¦ ÅëÇØ ½Ã·á ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ´Â Àüó¸® ¹æ¹ýÀ» °í¾ÈÇØ ÃÊÆĸ® ¹è¾Æ(Embryo)¿¡¼­ ¾à 5,600°³ ´Ü¹éÁúÀ», Nemes µîÀº °³±¸¸®(Xenopus)ÀÇ 16-¼¼Æ÷±â ¹è¾Æ¿¡¼­ ¾à 1,700°³ ´Ü¹éÁúÀ» °ËÃâÇÑ °á°ú¸¦ ¹ßÇ¥ÇÏ¿´´Ù. ÀÌ ¿¬±¸µéÀº ±Ø¹Ì·®ÀÇ ´Ü¹éÁú·Îµµ ´Ü¹éüÇÐ ºÐ¼®À» °¡´ÉÄÉÇÏ´Â ºÐ¼® ¹Î°¨µµ¸¦ È®º¸ÇÏ¿´´Ù´Â Á¡¿¡ ÀÇÀǸ¦ °®Áö¸¸, ºÐ¼®¿¡ »ç¿ëµÈ ¼¼Æ÷¸¦ ÁøÁ¤ÇÑ ´ÜÀÏ ¼¼Æ÷·Î º¼ ¼ö ¾ø´Ù´Â ÇÑ°èÁ¡ÀÌ ÀÖ´Ù.[8, 9] ±× ÈÄ Virant-Klun µîÀÌ Àΰ£ ³­ÀÚ(Oocyte)ÀÇ ´Ü¹éü¸¦ ºÐ¼®ÇØ ¹× ¾à 450°³ ´Ü¹éÁúÀ» µ¿Á¤(Identification)ÇÑ °á°ú¸¦ ¹ßÇ¥Çϸ鼭 Àΰ£ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐÀÇ Æ÷¹®À» ¿­¾ú´Ù.[10] ÀÌ¿Í °°Àº ¿¬±¸ ³í¹®À¸·Î ¹Ì·ç¾î ºÃÀ» ¶§, ´ÜÀÏ ¼¼Æ÷¿¡¼­µµ ½Éµµ ÀÖ´Â ´Ü¹éü ºÐ¼®ÀÌ °¡´ÉÇÏ´Ù°í º¼ ¼ö ÀÖÀ¸³ª, À̸¦ À§ÇÑ ½ÇÇè¿¡´Â ½ÇÇèÀÚÀÇ ½Ã°£°ú ³ë·ÂÀÌ »ó´ç·® ¼Ò¿äµÇ¹Ç·Î (½Ã·á´ç ¾à 4½Ã°£ÀÇ ½ÇÇèÀÌ ÇÊ¿ä) High-throughput ºÐ¼®À¸·Î ºÐ·ùÇϱ⿡´Â ¾î·Æ´Ù.

  Á¶Á÷À» ±¸¼ºÇÏ´Â ¼¼Æ÷±ºÀ» ºÐÀÚ ¹ßÇö Ư¼º¿¡ µû¶ó ¿©·¯ ¾ÆÇüÀ¸·Î ±¸ºÐÇÏ°í, ¾Ë·ÁÁöÁö ¾Ê¾Ò´ø Èñ±Í ¼¼Æ÷ ¾ÆÇüÀ» ¹ß±¼Çϱâ À§Çؼ­´Â ÃæºÐÈ÷ ¸¹Àº ¼öÀÇ ´ÜÀÏ ¼¼Æ÷ÀÇ ºÐ¼®ÀÌ ¿ä±¸µÈ´Ù. °³ÀÎÀûÀÎ °øµ¿ ¿¬±¸ °æÇè¿¡ ÀÇÇϸé, FACS¸¦ ÀÌ¿ëÇØ Àß ¾Ë·ÁÁø ¹æ½ÄÀ¸·Î ºÐ·ùÇÑ ¼¼Æ÷ ½Ã·áÀÇ °æ¿ì¿¡ 1,000°³ ´ÜÀÏ ¼¼Æ÷ÀÇ ºÐ¼®À» ÃÖ¼Ò ¿ä±¸Ä¡·Î º¸´Â °æ¿ìµµ ÀÖ¾ú´Ù. µû¶ó¼­ ÀÚµ¿È­µÈ ÀÛ¾÷È帧 ¹× ³ôÀº ÀçÇö¼º°ú ¹ü¿ë¼ºÀÌ È®º¸µÈ High-throughput ´ÜÀÏ ¼¼Æ÷ ¿À¹Í½ºÇÐÀÇ °³¹ß¿¡ ¸¹Àº °ü½ÉÀÌ ¸ð¾ÆÁö°í ÀÖ´Ù. ÀÌ·¯ÇÑ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ºÐ¼® °³¹ßÀ» ¼±µµÇÏ´Â SlavovÀÇ ¿¬±¸ÆÀ°ú KellyÀÇ ¿¬±¸ÆÀÀº °°Àº ¸ñÀûÀ» ÇâÇØ ¼­·Î ´Ù¸¥ Á¢±Ù¹ýÀ¸·Î ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐÀ» ½ÃµµÇÏ¿© °á°ú¸¦ ¹ßÇ¥ÇÑ ¹Ù ÀÖ´Ù. Northeastern ´ëÇÐÀÇ Slavov µîÀÌ ¹ßÇ¥ÇÑ SCOPE-MS¶ó´Â ºÐ¼®¹ýÀº FACS¸¦ ÀÌ¿ëÇØ ´ÜÀÏ ¼¼Æ÷¸¦ Microwell plateÀÇ Well¿¡ Çϳª¾¿ µµÆ÷ÇÑ µÚ, °¢ ´ÜÀÏ ¼¼Æ÷¿¡¼­ ´Ü¹éÁúÀ» ÃßÃâÇÏ°í º¯¼º½ÃÅ°°í ÆéŸÀ̵å·Î Á¦ÇÑ(Digestion)ÇÑ´Ù.[11] ±×¸®°í °¢ ´ÜÀÏ ¼¼Æ÷¿¡¼­ À¯·¡µÈ ÆéŸÀÌµå ½Ã·á¿¡ ¼­·Î ±¸ºÐµÇ´Â °íÀ¯ Áú·®À» °®´Â Tandem mass tag(TMTTM, Thermo Fisher Scientific)¶ó´Â µ¿À§¿ø¼ÒÇ¥ÁöÀÚ¸¦ ºÎÂøÇÑ´Ù. ´ÙÀ½À¸·Î ÆéŸÀÌµå ½Ã·áµéÀ» Çϳª·Î ÃëÇÕÇϴµ¥, µ¿À§¿ø¼ÒÇ¥ÁöÀÚ·Î ÀÎÇØ °¢°¢ÀÇ ´ÜÀÏ ¼¼Æ÷¿¡¼­ À¯·¡µÈ ÆéŸÀ̵å´Â Áú·®ºÐ¼®±â ³»¿¡¼­ ¼­·Î ±¸ºÐµÇ¾î ºÐ¼®µÈ´Ù. °³º° ´ÜÀÏ ¼¼Æ÷¸¦ °¢°¢ ºÐ¼®ÇÒ ¶§¿¡´Â Áú·®ºÐ¼®±âÀÇ ¹Î°¨µµ ÇÑ°è·Î ÀÎÇØ ºÐ¼®µÇ±â ¾î·Æ´Ù´Â ÇÑ°èÁ¡À» ½Ã·á¸¦ ÃëÇÕÇÏ¿© ½ÅÈ£ °­µµ¸¦ ³ôÀÌ´Â ¹æ½ÄÀ¸·Î ±Øº¹ÇÏ´Â Àü·«À» ÃëÇÑ °ÍÀÌ´Ù. Slavov ¿¬±¸ÆÀÀº ºÐ¼®¹ýÀÇ ¸ðµç °úÁ¤À» ÃÖÀûÈ­ÇÑ SCOPE-MS2¶ó´Â ºÐ¼®¹ýÀ» 3³â µÚ ¹ßÇ¥ÇÏ¿´°í, Macrophage·Î ºÐÈ­ ÁßÀÎ Monocyte ¾à 1500°³¿¡¼­ ¾à 3000°³ ´Ü¹éü ¹ßÇö º¯È­¸¦ ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ ÃøÁ¤ÇÑ °á°ú¸¦ ¹ßÇ¥ÇÏ¿´´Ù.[12] ¹Ì(Ú¸) Á¤ºÎ ¿¡³ÊÁöºÎ »êÇÏ Pacific Northwest ±¹¸³¿¬±¸¼ÒÀÇ Kelly µîÀÌ °³¹ßÇÑ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ºÐ¼®¹ýÀº NanoPOTS(Nanodroplet Processing in One pot for Trace Samples)¶ó°í ¸í¸íµÇ¾úÀ¸¸ç, ¿©±â¿¡´Â Picoliter ¼öÁØÀÇ ¾×ü¸¦ Á¤È®È÷ ´Ù·ê ¼ö ÀÖ´Â ¹Ì¼¼À¯Ã¼¿ªÇÐ Àåºñ¿Í ÀÚµ¿È­µÈ ÀÛ¾÷À» À§ÇÑ ·Îº¿ ÆÈÀÌ °áÇÕµÈ ÀåÄ¡°¡ »ç¿ëµÈ´Ù.[13] Ãß°¡·Î ÀÌ ¿¬±¸ÆÀ¿¡¼­´Â ¼Ò¼ö¼º Slide ¾È¿¡ ³ª³ë ´ÜÀ§ÀÇ Å©±â¸¦ °®´Â ¼ö½Ê-¼ö¹é °³ Ä£¼ö¼º ȨÀÌ ¼³°èµÈ Slide¸¦ °³¹ßÇÏ¿´´Ù. FACS¸¦ ºñ·ÔÇÑ ´ÜÀÏ ¼¼Æ÷ ºÐ·ù±â¸¦ ÅëÇØ ¼¼Æ÷¸¦ ºÐ·ùÇÒ ¶§, ÀÌ È¨¿¡ ´ÜÀÏ ¼¼Æ÷¸¦ Æ÷ÇÔÇÏ´Â NanodropletÀÌ ¿Ã·ÁÁö°í, ÀÌ Droplet ¾È¿¡¼­ ´Ü¹éÁúÀÇ ÃßÃâ°ú Á¦ÇÑ µîÀÇ Àü󸮰¡ ÀÌ·ïÁö¹Ç·Î ½Ã·áÀÇ ¼Õ½ÇÀÌ ÃÖ¼ÒÈ­µÈ´Ù. (±×¸²) ¶ÇÇÑ, ÀÚüÀûÀ¸·Î °³¹ßÇÑ Graphical user interface(GUI)¸¦ ÀÌ¿ëÇÏ¸é ½ÇÇè ¹× LC-MS·ÎÀÇ ÁÖÀÔ °úÁ¤À» ÀÚµ¿È­ÇÏ°í ÅëÁ¦ÇÒ ¼ö ÀÖ´Ù. µû¶ó¼­ ½ÇÇèÀÚÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 ÇÏ·ç¿¡ ÃÖ´ë ¼ö¹é °³ÀÇ ´ÜÀÏ ¼¼Æ÷¸¦ Àüó¸® ¹× ºÐ¼®ÇÒ ¼ö ÀÖ´Ù. ÃʱâÀÇ NanoPOTS ºÐ¼®¹ýÀº À§¿¡¼­ ¾ð±ÞµÇ¾ú´ø µ¿À§¿ø¼ÒÇ¥ÁöÀÚ¸¦ »ç¿ëÇÏÁö ¾Ê´Â ºñÇ¥ÁöºÐ¼®¹ý(Label-free analysis)·Î °³¹ßµÇ¾ú´Ù. ÀÌ ºÐ¼®¹ýÀº ½Ä¹° ¼¼Æ÷, Circulating tumor cell, ±×¸®°í laser-capture microdissectionÀ¸·Î ¼öÁýµÈ Á¶Á÷ µî ´Ù¾çÇÑ ½Ã·áÀÇ ºÐ¼®¿¡ Àû¿ëµÈ ¹Ù ÀÖ´Ù.[14-16]

±×¸² 1. (a) NanoPOTSÀÇ Á¤¸é »çÁø. (b) NanoPOTS chip°ú ½Ã·á Àü󸮸¦ ¼öÇàÇÏ´Â Micro-tip. (c) NanoPOTSÀÇ ½Ã·á Àüó¸® °úÁ¤.
±×¸² 1. (a) NanoPOTSÀÇ Á¤¸é »çÁø. (b) NanoPOTS chip°ú ½Ã·á Àü󸮸¦ ¼öÇàÇÏ´Â Micro-tip. (c) NanoPOTSÀÇ ½Ã·á Àüó¸® °úÁ¤.

  µÎ ¿¬±¸ÆÀÀº ¼­·Î ´Ù¸¥ Á¢±Ù¹ýÀ¸·Î ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ºÐ¼®¹ýÀÇ °³¹ßÀ» ¼±µµÇÏ°í ÀÖÁö¸¸ ¿©±â¿¡¼­ Àç¹ÌÀÖ´Â Á¡Àº ½Ã°£ÀÌ È帧¿¡ µû¶ó °¢ ÆÀÀÌ ºÐ¼®¹ýÀ» °³¼±Çϱâ À§ÇØ »ó´ë ¿¬±¸ÆÀÀÇ ºÐ¼® Àü·«À» ÃëÇÏ·Á ÇÏ°í ÀÖ´Ù´Â Á¡ÀÌ´Ù. Kelly ¿¬±¸ÆÀÀÌ ÀÌÈÄ °³¹ßÇÏ´Â ºÐ¼®¹ý¿¡¼­´Â ½ÅÈ£ °­µµ¸¦ È®º¸Çϸ鼭 µ¿½Ã¿¡ º¸´Ù ¸¹Àº ¼öÀÇ ´ÜÀÏ ¼¼Æ÷¸¦ ºÐ¼®Çϱâ À§ÇØ µ¿À§¿ø¼ÒÇ¥ÁöÀÚ¸¦ Àû¿ëÇÏ¿´°í,[17, 18] ¹Ý´ë·Î Slavov ¿¬±¸ÆÀ¿¡¼­´Â Ç¥¸é Á¢ÃËÀ¸·Î ÀÎÇØ ½Ã·áÀÇ ¼Õ½ÇÀÌ ¾ß±âµÇ´Â Microwell plate¸¦ »ç¿ëÇÏÁö ¾Ê°í NanoPOTS¿Í À¯»çÇÏ°Ô ³ª³ë Å©±â¸¦ °®´Â Droplet ³»¿¡¼­ ´Ü¹éÁú ½Ã·á¸¦ Àüó¸®ÇÏ´Â ¹æÇâÀ¸·Î ±â¼ú °³¹ßÀ» ÁøÇàÇÏ°í ÀÖ´Ù´Â Á¡ÀÌ´Ù.[19] ±×·¯¸é¼­ µÎ ¿¬±¸ÆÀ ¸ðµÎ ¼¼Æ÷ ºÐ·ù, µµÆ÷, ±×¸®°í Àü󸮸¦ À§ÇÑ Reagent handlingÀ» ÀÚµ¿À¸·Î ¼öÇàÇÏ´Â CellenONETM (Scienion) Àåºñ¸¦ Àû±Ø È°¿ëÇϸ鼭 ºÐ¼® È¿À²ÀÇ ±Ø´ëÈ­¸¦ ³ë¸®°í ÀÖ´Ù´Â Á¡µµ ´«¿©°Üº¼¸¸ ÇÏ´Ù.

   ±× ¹Û¿¡´Â µ¶ÀÏÀÇ Àú¸íÇÑ ´Ü¹éüÇÐ ¿¬±¸ÆÀÀÎ MannÀÇ ¿¬±¸ÆÀ¿¡¼­ True Single Cell Proteomics(T-SCP)·Î ¸í¸íÇÑ ºÐ¼®¹ýÀ» °³¹ßÇÏ¿© ¹ßÇ¥ÇÑ ¹Ù ÀÖ´Ù.[20] ÀÌ ¹æ¹ý¿¡¼­´Â À§¿¡¼­ ¼Ò°³ÇÑ SCOPE-MS¿Í °°ÀÌ ´ÜÀÏ ¼¼Æ÷°¡ 384-well plate ¾È¿¡¼­ Àü󸮵ȴÙ. ´Ù¸¥ Á¡Àº, Àüó¸®µÈ ÆéŸÀÌµå ½Ã·á°¡ ºÎºÐÀû ÀÚµ¿È­µÈ ¹æ½ÄÀ¸·Î Stage-TipÀ» °ÅÃÄ LC-MS·Î Àü´ÞµÇ°Ô²û ¼³°èµÇ¾î ÇÏ·ç¿¡ 40°³ÀÇ ´ÜÀÏ ¼¼Æ÷¸¦ ºñÇ¥ÁöºÐ¼®Çϵµ·Ï ¼³°èµÇ¾ú´Ù´Â Á¡ÀÌ´Ù. ¿¬±¸ÆÀ¿¡¼­´Â ÀÌ ºÐ¼®¹ýÀ» ÀÌ¿ëÇØ 231°³ HeLa ¼¼Æ÷¿¡¼­ ¾à 2,500°³ ´Ü¹éÁúÀ» °ËÃâÇÏ¿´°í, °¢ ¼¼Æ÷°¡ ³õ¿©ÀÖ´Â ¼­·Î ´Ù¸¥ ¼¼Æ÷ ºÐ¿­ Áֱ⿡ µû¸¥ ´Ü¹éü ±¸¼ºÀ» ºÐ¼®ÇÏ¿© Áֱ⿡ µû¶ó °Þ´Â ¾çÀûÀÎ º¯È­¸¦ Ž»öÇÏ¿´´Ù.

✓±â¼ú Àü¸Á

  À§¿¡¼­ ¼Ò°³ÇÑ »ç·Ê ¿Ü¿¡µµ ´Ù¾çÇÑ ±â¼ú °³¹ßÀÌ ÀÌ·ïÁö°í ÀÖÀ¸¸ç, Àú¸¶´Ù ´Ù¸¥ ¹æ½ÄÀ¸·Î High-throughput ºÐ¼®À» ÀÌ·ç°íÀÚ ÇÑ´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ÇöÀç±îÁö ¹ßÇ¥µÈ ¹®ÇåÀ» Á¶»çÇßÀ» ¶§, ºÐ¼® ¹æ½Ä°ú µ¥ÀÌÅÍ Ã³¸® ¹æ½Ä¿¡ µû¶ó »óÀÌÇÏÁö¸¸, ºÐ¼® °¡´ÉÇÑ ´Ü¹éÁúÀÇ ¼ö´Â Àû°Ô´Â 1,000°³¿¡¼­ ¸¹°Ô´Â 3,000°³ ¼öÁØ¿¡ ºÒ°úÇÏ´Ù. ¶ÇÇÑ ´ëºÎºÐÀÇ ¹æ½Ä¿¡¼­ ´ÜÀÏ ¼¼Æ÷ ºÐ·ùºÎÅÍ LC-MS ºÐ¼®±îÁöÀÇ °úÁ¤¿¡ ´ëÇØ ÀÚµ¿È­°¡ ºÎºÐÀûÀ¸·Î¸¸ ÀÌ·ïÁ³±â ¶§¹®¿¡ ÀçÇö¼ºÀÌ ÃæºÐÇÏÁö ¾ÊÀ¸¸ç, ½ÇÇèÀÚÀÇ °³ÀÔ ¾øÀÌ ÂªÀº ½Ã°£ ³»¿¡ ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´ÜÀÏ ¼¼Æ÷ÀÇ ¼ö´Â ±ØÈ÷ Àû´Ù. °³ÀÎÀûÀÎ ÀÇ°ßÀ¸·Î´Â, ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ´Ü¹éüÇÐ ¿¬±¸ÀÚµéÀÌ ³ª¸§´ë·ÎÀÇ Breakthrough¸¦ À§ÇØ °í³úÇÏ´Â ÇÑÆí, ´Ü¹éÁú ½Ã·á ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ Ç¥¸é 󸮸¦ ¿¬±¸ÇÏ´Â È­ÇÐÀÚ, ¹Ì¼¼°øÁ¤ÀÇ ÀÚµ¿È­¸¦ ¿¬±¸ÇÏ´Â °øÇÐÀÚ, ±×¸®°í ºÐ¼® ¹Î°¨µµ È®º¸¸¦ À§ÇØ ³ë·ÂÇÏ´Â LC-MS °³¹ßÀÚµé°ú ¹ÐÁ¢ÇÏ°Ô °øµ¿ ¿¬±¸¸¦ ¼öÇàÇØ¾ß ÇÒ °ÍÀ¸·Î »ý°¢ÇÑ´Ù.

   ´ÜÀÏ ¼¼Æ÷ ¼öÁØ¿¡¼­ ¼öÁýÇÑ ´Ü¹éüÇÐ µ¥ÀÌÅÍ´Â ´ÜÀÏ ¼¼Æ÷ À¯ÀüüÇÐ µ¥ÀÌÅÍ¿¡ »óº¸ÀûÀÎ µ¥ÀÌÅÍ°¡ µÉ »Ó¸¸ ¾Æ´Ï¶ó ¼¼Æ÷ ³»¿¡¼­ ½ÇÁ¦ ±â´ÉÀ» ÇÏ´Â ´Ü¹éÁúÀÇ Á¤º¸¸¦ Á¦°øÇϹǷΠ±× ÀÚü·Îµµ ±ÍÁßÇÑ Á¤º¸ÀÌ´Ù. ±×·¯³ª ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ±â¼úÀÇ ÇöȲÀº 20,000°³ ÀÌ»óÀÇ ´ÜÀÏ ¼¼Æ÷¸¦ ºÐ¼®ÇÏ¿© ´Ù¾çÇÑ ¾ÆÇüÀ» ¹ß±¼ÇÏ´Â ´ÜÀÏ ¼¼Æ÷ RNA-seq ±â¼ú°ú ºñ±³ÇÏ¸é °¥ ±æÀÌ ¼ö¸¸ ¸®´Â µÈ´Ù°í ÇÒ ¼ö ÀÖ°Ú´Ù. High-throughput ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ºÐ¼® ±â¼úÀÌ È®º¸µÇ¾î ´ÜÀÏ ¼¼Æ÷ÀÇ ´ÙÁß ¿À ¹Í½º°¡ °¡´ÉÇØÁö¸é, ÃÊ°íÇØ»óµµÀÇ ºÐÀÚ ±âÀü Á¤º¸¸¦ ÅëÇØ ¼¼Æ÷ ´Ù¾ç¼ºÀ̶ó´Â À帷¿¡ °¡·ÁÁ® È帴ÇÏ°Ô º¸¿´´ø »ý¸í Çö»óµéÀ» ¸íÈ®ÇÏ°Ô ¹àÇôÁÙ °ÍÀ¸·Î Àü¸ÁµÇ°í ÀÖ´Ù. À̸¦ À§ÇÑ ±æÀÌ ºñ·Ï Çè³­ÇÒÁö¶óµµ ´ÜÀÏ ¼¼Æ÷ ´Ü¹éüÇÐ ¿¬±¸ÀÚµéÀÌ °¡¾ß ÇÒ ±æÀÌ ¾Æ´Ò±î.

Âü°í¹®Çå

  • 1.

    Casci, T., Next-generation omics. Nature Reviews Genetics, 2012. 13(6): p. 378-378.

  • 2.

    Meissner, F., et al., The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery, 2022. 21(9): p. 637-654.

  • 3.

    Olah, M., et al., Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nature Communications, 2020. 11(1): p. 6129.

  • 4.

    Wu, F., et al., Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nature Communications, 2021. 12(1): p. 2540.

  • 5.

    Spitzer, M.H. and G.P. Nolan, Mass Cytometry: Single Cells, Many Features. Cell, 2016. 165(4): p. 780-91.

  • 6.

    Aebersold, R. and M. Mann, Mass-spectrometric exploration of proteome structure and function. Nature, 2016. 537(7620): p. 347-355.

  • 7.

    Liu, W., et al., Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nature Communications, 2021. 12(1): p. 4961.

  • 8.

    Lombard-Banek, C., S.A. Moody, and P. Nemes, Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo. Angew Chem Int Ed Engl, 2016. 55(7): p. 2454-8.

  • 9.

    Hughes, C.S., et al., Ultrasensitive proteome analysis using paramagnetic bead technology. Molecular Systems Biology, 2014. 10(10): p. 757.

  • 10.

    Virant-Klun, I., et al., Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes. Mol Cell Proteomics, 2016. 15(8): p. 2616-27.

  • 11.

    Budnik, B., et al., SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biology, 2018. 19(1): p. 161.

  • 12.

    Specht, H., et al., Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biology, 2021. 22(1): p. 50.

  • 13.

    Zhu, Y., et al., Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nature Communications, 2018. 9(1): p. 882.

  • 14.

    Balasubramanian, V.K., et al., Cell-Type-Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Curr Protoc, 2021. 1(5): p. e153.

  • 15.

    Zhu, Y., et al., Proteome Profiling of 1 to 5 Spiked Circulating Tumor Cells Isolated from Whole Blood Using Immunodensity Enrichment, Laser Capture Microdissection, Nanodroplet Sample Processing, and Ultrasensitive nanoLC-MS. Analytical Chemistry, 2018. 90(20): p. 11756-11759.

  • 16.

    Zhu, Y., et al., Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Mol Cell Proteomics, 2018. 17(9): p. 1864-1874.

  • 17.

    Woo, J., et al., High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat Commun, 2021. 12(1): p. 6246.

  • 18.

    Park, J., et al., Evaluating Linear Ion Trap for MS3-Based Multiplexed Single-Cell Proteomics. Analytical Chemistry, 2023. 95(3): p. 1888-1898.

  • 19.

    Leduc, A., et al., Exploring functional protein covariation across single cells using nPOP. Genome Biology, 2022. 23(1): p. 261.

  • 20.

    Brunner, A.-D., et al., Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Molecular Systems Biology, 2022. 18(3): p. e10798.

ÀúÀÚ¾à·Â

  • 2010.03-2014.02

    ¼­°­´ëÇб³ È­°ø»ý¸í°øÇаú, Çлç

  • 2014.03-2019.08

    ¼­¿ï´ëÇб³ °ø°ú´ëÇÐ ¹ÙÀÌ¿À¿£Áö´Ï¾î¸µ Çùµ¿°úÁ¤, ¼®·¹Ú»ç

  • 2020.04-2020.12

    ¼­¿ï´ëÇб³º´¿ø ÀÇ»ý¸í¿¬±¸¿ø, ¿¬¼ö¿¬±¸¿ø

  • 2021.02-2021.09

    Columbia University Medical Center, Associate research scientist

  • 2021.09-2022.04

    Pacific Northwest National Laboratory, Post-doctoral researcher

  • 2022.04-ÇöÀç

    Â÷ÀÇ°úÇдëÇб³ ÀÇÇÐÀü¹®´ëÇпø, Á¶±³¼ö