³í´Ü

±èÀÏÁø
Àú»ê¼Ò¿¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷ü Á¶Àý
±èÀÏÁø ÀÎÇÏ´ëÇб³ ¾à¸®Çб³½Ç
¸ÞÀÏ ijk@inha.ac.kr

[¼­·Ð]

   ¼¼Æ÷¹Û¼ÒÆ÷ü(extracellular vesicle, EV)´Â ¼¼Æ÷ ¿ÜºÎ·Î ¹æÃâµÇ´Â ÁöÁú ÀÌÁ߸· ÀÔÀڷμ­, ¼¼Æ÷ °£ ±³½ÅÀ» ÅëÇØ ´Ù¾çÇÑ »ý¹°ÇÐÀû °úÁ¤¿¡ °ü¿©ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. À̵éÀº ´Ü¹éÁú, DNA, RNA, ´ë»çü µîÀÇ »ýüºÐÀÚ¸¦ ¿î¹ÝÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¼¼Æ÷ °£ »óÈ£ÀÛ¿ë ¹× ½ÅÈ£Àü´Þ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. Àú»ê¼Ò(hypoxia) ȯ°æÀº ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ½ºÆ®·¹½º ¿äÀÎ Áß Çϳª´Ù [1]. º» ³í´Ü¿¡¼­´Â ¼¼Æ÷¹Û¼ÒÆ÷ü¿Í Àú»ê¼ÒÀÇ º¹ÀâÇÑ °ü°è¸¦ Á¤¸®ÇÏ°í, Àú»ê¼Ò ¿¬°ü ÁúȯÀÇ Ä¡·á¿Í °ü·ÃµÈ ÃֽŠ¿¬±¸¸¦ ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.

[º»¹®]

1. ¼¼Æ÷¹Û¼ÒÆ÷ü

   ¼¼Æ÷¹Û¼ÒÆ÷ü´Â Å©±â, »ý¼º °æ·Î, ±¸¼º µîÀÇ Æ¯¼º¿¡ µû¶ó ¼¼ °¡Áö ÁÖ¿ä À¯ÇüÀ¸·Î ºÐ·ùµÈ´Ù: (1) ¼¼Æ÷ÀÚ¸ê»ç¼Òü(apoptotic body), (2) ¹Ì¼¼¼ÒÆ÷(microvesicle), (3) ¿¢¼ÒÁ»(exosome) [2, 3]. ¼¼Æ÷ÀÚ¸ê»ç¼Òü´Â ÁÖ·Î ¼¼Æ÷»ç¸ê °úÁ¤ Áß Çü¼ºµÇ¸ç, 1,000-5,000 nmÀÇ Å©±â¸¦ °¡Áö°í DNA ºÐÀý°ú ¼¼Æ÷ ¼Ò±â°üÀ» Æ÷ÇÔÇÒ ¼ö ÀÖ´Ù [4]. ¹Ý¸é, ¹Ì¼¼¼ÒÆ÷¿Í ¿¢¼ÒÁ»Àº ÁÖ·Î ºñ¼¼Æ÷»ç¸ê¼º ¼¼Æ÷¿¡ ÀÇÇØ »ý¼ºµÈ´Ù. ¹Ì¼¼¼ÒÆ÷´Â ¿¢ÅäÁ»(ectosome)À̳ª ¹Ì¼¼ÀÔÀÚ(microparticle)·Îµµ ¾Ë·ÁÁ® ÀÖÀ¸¸ç, ±× Å©±â´Â 100-1,000 nm·Î ¿øÇüÁú¸·¿¡¼­ ¿ÜºÎ·Î ¹ß¾ÆÇϸ鼭 »ý¼ºµÈ´Ù [5, 6]. ¿¢¼ÒÁ»Àº 30-150 nmÀÇ Å©±â·Î, ¿£µµ¼Ø(endosome) °æ·Î¸¦ µû¶ó ´ÙÁß¼ÒÆ÷ü(multivesicular body, MVB)°¡ ¿øÇüÁú¸·°ú À¶ÇÕÇÏ´Â °úÁ¤¿¡¼­ »ý¼ºµÈ´Ù. [7]. µû¶ó¼­, ´ÙÁß¼ÒÆ÷ü¿¡¼­ À¯·¡ÇÑ ¿¢¼ÒÁ»°ú Å©±â°¡ À¯»çÇÏ´õ¶óµµ ¿øÇüÁú¸·¿¡¼­ ¹ß¾ÆµÇ¾î »ý¼ºµÇ´Â ÀÛÀº ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ±× Ư¼ºÀÌ ´Ù¸£±â ¶§¹®¿¡ ±¸ºÐµÇ¾î¾ß ÇÑ´Ù. [8]. ÀÌ·¯ÇÑ ºÐ·ù´Â ¿©ÀüÈ÷ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, 2018³â¿¡ Á¦Á¤µÈ ISEV Áöħ(MISEV2018)Àº ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ ±× Ư¡¿¡ µû¶ó À¯Çüº°·Î ³ª´©¾î »ç¿ëÇÒ °ÍÀ» ±ÇÀåÇÑ´Ù. ¿¹¸¦ µé¾î, ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ Å©±â¿¡ µû¶ó ºÐ·ùÇÒ °æ¿ì ÀÛÀº ¼¼Æ÷¹Û¼ÒÆ÷ü, Áß°£ ¼¼Æ÷¹Û¼ÒÆ÷ü, Å« ¼¼Æ÷¹Û¼ÒÆ÷ü·Î ¸í¸íÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ, ¹Ðµµ, ºÐÀÚ»ý¹°ÇÐÀû Á¶¼º, »ý¹°ÇÐÀû »óÅÂ, ±â¿øÇÏ´Â ¼¼Æ÷ µî ´Ù¾çÇÑ ±âÁØÀ¸·Î ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ ºÐ·ùÇÒ ¼ö ÀÖ´Ù.

   ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ È®ÀÎÇÒ ¶§´Â Àû¾îµµ µÎ °¡Áö ÀÌ»óÀÇ ¼­·Î ´Ù¸¥ ½ÇÇè ±â¹ýÀ» »ç¿ëÇÏ¿© °ËÁõÇÏ´Â °ÍÀÌ ±ÇÀåµÈ´Ù. ³ª³ëÀÔÀÚÃßÀûºÐ¼®(NTA), Åõ°úÀüÀÚÇö¹Ì°æ(TEM), Western blotting µî ´Ù¾çÇÑ ºÐ¼®¹ýÀ» ÅëÇØ ´ÜÀÏ ¼ÒÆ÷ü°¡ ¼¼Æ÷·ÎºÎÅÍ ÀÚ¿¬ÀûÀ¸·Î ¹æÃâµÇ¾ú´ÂÁö, ÁöÁú ÀÌÁ߸·À¸·Î µÑ·¯½Î¿© ÀÖ´ÂÁö, ±â´ÉÀ» °¡Áø ÇÙÀ» Æ÷ÇÔÇÏÁö ¾Ê´ÂÁö, ƯÁ¤ÇÑ ºÐÀÚ Ç¥ÁöÀÚ¸¦ ¹ßÇöÇÏ°í ÀÖ´ÂÁö¸¦ È®ÀÎÇÒ ¼ö ÀÖ´Ù. ºÐÀÚ Ç¥ÁöÀÚÀÇ °æ¿ì, ¿¹¸¦ µé¾î CD63°ú CD9ÀÌ ¿¢¼ÒÁ»ÀÇ Ç¥ÁöÀÚ·Î ÈçÈ÷ »ç¿ëµÇ°í ÀÖ´Ù. ÇÏÁö¸¸ À̵éÀº ¼¼Æ÷¸·¿¡¼­ ¹ß¾ÆµÇ´Â ¹Ì¼¼¼ÒÆ÷¿¡¼­µµ ¹ß°ßµÈ´Ù´Â º¸°í°¡ Àֱ⠶§¹®¿¡ ´Ü¼øÈ÷ ¼Ò¼öÀÇ ºÐÀÚ Ç¥ÁöÀÚ·Î ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ À¯ÇüÀ» ƯÁ¤ÇÏ´Â µ¥¿¡´Â ÁÖÀÇ°¡ ÇÊ¿äÇÏ´Ù. ÇöÀç MISEV2018 Áöħ¿¡¼­´Â ƯÁ¤ÇÑ ÇÑ °¡Áö ¼¼Æ÷¹Û¼ÒÆ÷ü À¯ÇüÀÌ ¾Æ´Ñ ¸ðµç ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡ ÀϹÝÀûÀ¸·Î Àû¿ëµÉ ¼ö ÀÖ´Â ºÐÀÚ Ç¥ÁöÀÚÀÇ »ç¿ëÀ» ±ÇÀåÇÏ°í ÀÖ´Ù [9].

2. Àú»ê¼Ò¿¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâ Á¶Àý

   ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ±×µéÀÌ ±â¿øÇÏ´Â ¸ðü ¼¼Æ÷ÀÇ »óÅ¿¡ ¿µÇâÀ» ¹Þ´Â´Ù. Àú»ê¼Ò ȯ°æÀº ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼ºÀ» ÃËÁøÇϸç, ÀÌ´Â ¾Ï Á¶Á÷¿¡¼­ ¼¼Æ÷¹Û¼ÒÆ÷ü°¡ ³ôÀº ³óµµ·Î ÃøÁ¤µÇ´Â ÀÌÀ¯ Áß ÇϳªÀÏ ¼ö ÀÖ´Ù. »ê¼Ò°¡ ºÎÁ·ÇÑ Á¶°Ç¿¡¼­ »ý¼ºµÈ ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ¾ÏÀÇ ¾Ç¼ºÈ­¸¦ À¯µµÇÏ´Â ¼ºÁúÀ» °¡Áö°í ÀÖÀ½ÀÌ ¾Ë·ÁÁ® ÀÖ´Ù [10]. ÀÌ·¯ÇÑ ÀÌÀ¯·Î ¿¢¼ÒÁ»ÀÇ »ý¼º ȤÀº ¹æÃâÀ» ¾ïÁ¦ÇÏ´Â ¾à¹°µéÀÌ Ç×¾Ï Ä¡·áÁ¦·Î ¿¬±¸µÇ°í ÀÖ´Ù [11]. ¶ÇÇÑ, Àú»ê¼Ò ¹Ì¼¼È¯°æÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â ¼¼Æ÷¹Û¼ÒÆ÷ü ±â¹ÝÀÇ Ä¡·áÁ¦ °³¹ß¿¡ ´ëÇÑ ¿¬±¸µµ ÁøÇàµÇ°í ÀÖ´Ù [12]. Àú»ê¼Ò¿Í ¼¼Æ÷¹Û¼ÒÆ÷ü °£ÀÇ °ü°è¸¦ ÀÌÇØÇÏ´Â °ÍÀº ¾ÏÀÇ »õ·Î¿î Áø´Ü ¹× Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÏ´Ù.

   ÀϹÝÀûÀ¸·Î, Àú»ê¼Ò ȯ°æÀº ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâ¿¡ °ü¿©ÇÏ´Â À¯ÀüÀÚÀÇ ¹ßÇöÀ» Áõ°¡½ÃŲ´Ù [13, 14]. ¿¹¸¦ µé¾î, 1% Àú»ê¼Ò¿¡ ³ëÃâµÈ LL-2 ¹× A549 Æó¾Ï ¼¼Æ÷´Â ´õ ¸¹Àº ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ »ý»êÇÏ´Â °ÍÀ¸·Î °üÂûµÇ¾ú´Ù [15]. ¾Ï¼¼Æ÷»Ó¸¸ ¾Æ´Ï¶ó Áٱ⼼Æ÷, Ç÷°ü³»ÇǼ¼Æ÷, Ç÷¾×¼¼Æ÷, ¸é¿ª¼¼Æ÷ µî ´ëºÎºÐÀÇ ¼¼Æ÷ À¯Çü¿¡¼­ Àú»ê¼Ò Àڱؿ¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâ Áõ°¡°¡ º¸°íµÇ¾ú´Ù [1]. ÀÌ·¯ÇÑ Çö»óÀº »ê¼Ò ºÎÁ·ÀÇ Á¤µµ¿Íµµ °ü·ÃÀÌ ÀÖ´Â °ÍÀ¸·Î º¸ÀδÙ. 0.1% »ê¼Ò ȯ°æ¿¡¼­´Â 1% »ê¼Ò ȯ°æ¿¡¼­ °üÂûµÈ °Íº¸´Ù ¾à 3¹è ³ôÀº ¼öÁØÀÇ ¿¢¼ÒÁ» ¹æÃâÀÌ °üÂûµÇ¾ú´Ù [16]. 2% »ê¼Ò¿¡ ³ëÃâµÈ HMEC-1 ¼¼Æ÷¿¡¼­´Â Á¤»ó »ê¼Ò Á¶°Ç°ú ºñ±³ÇÏ¿© Å« º¯È­°¡ ¾ø´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [17]. µû¶ó¼­, Àú»ê¼ÒÀÇ ½É°¢µµ´Â ¼¼Æ÷¹Û¼ÒÆ÷ü ¹æÃâÀÇ Á¤µµ¸¦ °áÁ¤ÇÏ´Â Áß¿äÇÑ ¿äÀÎ Áß Çϳª·Î ¿©°ÜÁø´Ù.

   ¼¼Æ÷¹Û¼ÒÆ÷ü »ý¼ºÀº Àû¾îµµ ºÎºÐÀûÀ¸·Î Àú»ê¼ÒÀ¯µµÀÎÀÚ(Hypoxia-Inducible Factor, HIF)¸¦ ÅëÇØ ¸Å°³µÇ´Â °ÍÀ¸·Î »ý°¢µÈ´Ù. HIF´Â »ê¼Ò ³óµµ°¡ °¨¼ÒÇßÀ» ¶§ È°¼ºÈ­µÇ´Â Àü»çÀÎÀÚ·Î, Àú»ê¼Ò ¿¬°ü À¯ÀüÀÚµéÀÇ ¹ßÇöÀ» Á¶ÀýÇÏ´Â ÇÙ½É ÀÎÀÚÀÌ´Ù [18]. MDA-MB-231 À¯¹æ¾Ï ¼¼Æ÷¿¡ HIF¸¦ ¾ÈÁ¤È­ÇÏ´Â ¾à¹°ÀÎ dimethyloxalylglycine (DMOG)¸¦ ó¸®ÇÏ¿´À» ¶§, ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀÌ Áõ°¡ÇÏ´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [16]. ÀÌ¿Í À¯»çÇÏ°Ô, ÁãÀÇ ½ÅÀå ±ÙÀ§°ü ¼¼Æ÷¿¡ DMOG¸¦ ó¸®ÇßÀ» ¶§ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀÌ Áõ°¡ÇÏ´Â °ÍÀÌ È®ÀεǾú´Ù [19]. Æó¾Ï ¼¼Æ÷¿¡¼­ ÁøÇàµÈ ±âÀü ¿¬±¸¿¡¼­´Â Àú»ê¼Ò ȯ°æ¿¡¼­ »ý»êµÈ ¼¼Æ÷¹Û¼ÒÆ÷ü°¡ miR-23a¸¦ ÅëÇØ HIFÀÇ ºÐÇظ¦ À¯µµÇÏ´Â HIF Prolyl Hydroxylase (PHD) ´Ü¹éÁúÀ» ¾ïÁ¦ÇÏ¿© HIF ÀÇÁ¸Àû ¼¼Æ÷¹Û¼ÒÆ÷ü »ý¼ºÀ» À¯µµÇÏ´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [20]. ±×·¯³ª ¼¼Æ÷ À¯Çü¿¡ µû¶ó ´Ü¼øÈ÷ HIF¸¦ È°¼ºÈ­ÇÏ´Â °Í¸¸À¸·Î´Â ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼ºÀÌ Áõ°¡ÇÏÁö ¾Ê´Â °æ¿ìµµ ÀÖ´Ù. ÀÌ´Â Àú»ê¼Ò¿¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷ü »ý¼º¿¡ ÀÖ¾î HIF ºñÀÇÁ¸Àû ½ÅÈ£Àü´Þµµ ÀÏÁ¤ÇÑ ¿ªÇÒÀ» ÇÔÀ» ½Ã»çÇÑ´Ù [21].

   ´ÙÁß¼ÒÆ÷ü¿Í Èı⠿£µµ¼ØÀÌ ¼¼Æ÷¸·À¸·Î À̵¿ÇÏ´Â µ¥¿¡´Â ¼¼Æ÷ °ñ°Ý ¹× ±¸Á¶¿Í °ü·ÃµÈ ºÐÀÚµéÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù [22]. ¼¼Æ÷ °ñ°Ý°ú ¿îµ¿À» Á¶ÀýÇÏ´Â RhoA´Â ROCK/LIMK/cofilin, citron-K µîÀÇ ÇÏÀ§ ½ÅÈ£Àü´Þ °æ·Î¸¦ ÅëÇØ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀ» ÃËÁøÇÑ´Ù [23, 24]. ¼¼Æ÷´Â Àú»ê¼Ò ȯ°æ¿¡¼­ HIF¸¦ ÅëÇØ RhoA¸¦ È°¼ºÈ­½ÃŲ´Ù. RhoA À¯ÀüÀÚ¿¡´Â ´Ù¼öÀÇ HIF °áÇÕ ¿µ¿ªÀÌ Á¸ÀçÇϱ⠶§¹®¿¡, ÀÌ´Â HIF-1/2¥áÀÇ Á÷Á¢ÀûÀÎ Àü»ç Ç¥ÀûÀÌ µÈ´Ù [25-27]. RhoA´Â ¶ÇÇÑ NPY/Y5R °æ·Î¸¦ ÅëÇØ HIF ºñÀÇÁ¸ÀûÀ¸·Îµµ È°¼ºÈ­µÉ ¼ö ÀÖ´Ù [28]. »Ó¸¸ ¾Æ´Ï¶ó, Àú»ê¼Ò¿¡ ÀÇÇØ À¯µµµÇ´Â ¿øÇü RNAÀÎ circ-133µµ RhoA¸¦ È°¼ºÈ­½Ãų ¼ö ÀÖ´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [29].

   ´ÙÁß¼ÒÆ÷ü°¡ ¿øÇüÁú¸·°ú À¶ÇÕÇÏ´Â °ÍÀº ¿¢¼ÒÁ»ÀÇ ¹æÃâ¿¡ ÀÖ¾î ÁÖ¿ä °úÁ¤ Áß ÇϳªÀÌ´Ù [22]. ¾Ï¼¼Æ÷¿¡¼­´Â ±ä ºñ¾Ïȣȭ RNA(lncRNA)ÀÎ HOTAIR°¡ ´ÙÁß¼ÒÆ÷ü¸¦ ¿î¹ÝÇÏ°í ¿øÇüÁú¸·°úÀÇ À¶ÇÕÀ» À¯µµÇÏ¿© ¿¢¼ÒÁ»ÀÇ ¹æÃâÀ» ÃËÁøÇÑ´Ù [30]. HIF-1¥á´Â HOTAIRÀÇ ÇÁ·Î¸ðÅÍ ³» Àú»ê¼Ò¹ÝÀÀ¿ä¼Ò(hypoxia-responsive element, HRE)¿¡ °áÇÕÇÏ¿© ¹ßÇöÀ» À¯µµÇÑ´Ù [31]. Rab GTPase´Â ¼¼Æ÷ ³» ¸· À̵¿°ú À¶ÇÕÀ» Á¶ÀýÇÏ´Â °ÍÀ¸·Î Àß ¾Ë·ÁÁ® ÀÖ´Ù [32]. Rab22A´Â 5°³ÀÇ HRE¸¦ °¡Áö°í ÀÖÀ¸¸ç Àú»ê¼Ò¿¡ ÀÇÇØ È°¼ºÈ­µÇ¾î ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀ» À¯µµÇÑ´Ù [33]. ¸¶Âù°¡Áö·Î, Rab27A´Â B¸²ÇÁ±¸¿¡¼­ HIF-1¥á¿¡ ÀÇÇØ À¯µµµÇ¾î ¼¼Æ÷¹Û¼ÒÆ÷ü ¹æÃâÀ» Áõ°¡½ÃŲ´Ù [34]. ³­¼Ò¾Ï¿¡¼­´Â STAT3°¡ HIF ºñÀÇÁ¸ÀûÀ¸·Î RAB27AÀÇ ¹ßÇöÀ» À¯µµÇϱ⵵ ÇÑ´Ù [35].

   ¸®¼ÒÁ»(lysosome)Àº ´Ù¾çÇÑ »ýüºÐÀÚÀÇ ºÐÇظ¦ ´ã´çÇÏ´Â ¼¼Æ÷ ¼Ò±â°üÀÌ´Ù [36]. ´ÙÁß¼ÒÆ÷ü´Â ¸®¼ÒÁ»°ú À¶ÇÕµÇ¾î ³»ºÎÀÇ »ê¼º ȯ°æ¿¡ ÀÇÇØ ºÐÇØµÉ ¼ö ÀÖ´Ù [37]. Àú»ê¼Ò¸¦ Æ÷ÇÔÇÑ È¯°æÀû ½ºÆ®·¹½º´Â ¸®¼ÒÁ»ÀÇ ±â´É¿¡ ÀÌ»óÀ» À¯¹ßÇÒ ¼ö ÀÖ´Ù. Àú»ê¼Ò ȯ°æÀº ¸®¼ÒÁ» ¿¬°ü ¸·´Ü¹éÁú(lysosomal-associated membrane protein, LAMP)°ú cathepsin D¿Í °°Àº Áß¿äÇÑ ¸®¼ÒÁ» ´Ü¹éÁúÀÇ ¹ßÇöÀ» ¾ïÁ¦ÇÔÀ¸·Î½á ¸®¼ÒÁ»ÀÇ »ý¼ºÀ» ÀúÇØÇÑ´Ù [38]. ¸®¼ÒÁ»ÀÇ ºñÁ¤»óÀû »ý¼º ȤÀº ±â´É ÀÌ»óÀº °á°úÀûÀ¸·Î ¿£µµ¼Ø¿¡¼­ À¯·¡ÇÏ´Â ¿¢¼ÒÁ»ÀÇ ¹æÃâÀ» Áõ°¡½Ãų ¼ö ÀÖ´Ù. ÃÖ±Ù ¿¬±¸¿¡¼­´Â HIF-1¥á°¡ ¸®¼ÒÁ»ÀÇ ¼¼Æ÷ ³» À̵¿¿¡ °ü¿©ÇÏ´Â ATP6V1AÀÇ Àü»ç¸¦ ¾ïÁ¦ÇÔÀ¸·Î½á ¸®¼ÒÁ» ±â´ÉÀ» ¾ïÁ¦ÇÏ°í, ´ÙÁß ¼ÒÆ÷ü¿Í ¸®¼ÒÁ»ÀÇ À¶ÇÕÀ» ÀúÇØÇÏ¿© ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀ» Áõ°¡½ÃÅ°´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [39].

   Àú»ê¼Ò´Â ¼¼Æ÷ ȯ°æÀ» º¯È­½ÃÅ°¸é¼­ °£Á¢ÀûÀ¸·Î ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀ» Áõ°¡½Ãų ¼ö ÀÖ´Ù [40]. Àú»ê¼Ò ½ºÆ®·¹½º´Â ÇØ´ç°úÁ¤À» ÅëÇØ ¼¼Æ÷ ³» pH¸¦ ³·Ãß´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. »ê¼ºÀÇ Á¾¾ç ¹Ì¼¼È¯°æÀº ¾Ï¼¼Æ÷ÀÇ Áõ½Ä, ÀÌÁÖ, ħÀ±À» ÃËÁøÇÏ´Â µ¥ ±â¿©ÇÑ´Ù [41]. ÀÚ¼¼ÇÑ ±âÀüÀº ¾ÆÁ÷ ¸ð¸£Áö¸¸, ³·Àº pH´Â ¾Ï¼¼Æ÷¿¡¼­ ¿¢¼ÒÁ»ÀÇ ¹æÃâ°ú Èí¼ö¸¦ ¸ðµÎ Áõ°¡½ÃŲ´Ù°í º¸°íµÇ¾ú´Ù [40]. ¿ä¾àÇϸé, Àú»ê¼Ò´Â ÁÖ¿ä ½ÅÈ£Àü´Þ °æ·ÎÀÇ È°¼ºÈ­, Áß°£Ã¼ÀÇ ¼¼Æ÷ ³» À̵¿ Á¶Àý, ¸®¼ÒÁ» ±â´ÉÀÇ ¾ïÁ¦, Á¾¾ç ¹Ì¼¼È¯°æÀÇ º¯È­ À¯µµ µî ´Ù¾çÇÑ ¹æ¹ýÀ» ÅëÇØ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâÀ» Á¶ÀýÇÑ´Ù.

3. Àú»ê¼Ò¿¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¿î¹Ý¹°Áú ¹× Ư¼º Á¶Àý

   Àú»ê¼Ò´Â ´Ü¹éÁú, ÇÙ»ê, ´ë»çü µî ´Ù¾çÇÑ »ýüºÐÀÚÀÇ ¼¼Æ÷¹Û¼ÒÆ÷ü žÀç¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù (±×¸² 1). A431 ÇÇºÎ¾Ï ¼¼Æ÷´Â Àú»ê¼Ò¿¡ ³ëÃâµÇ¾úÀ» ¶§ CD9, CD81, Alix¿Í °°Àº ¿¢¼ÒÁ» °ü·Ã ´Ü¹éÁúÀÇ ¹ßÇöÀÌ Áõ°¡ÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [42]. ³úÁ¾¾ç ȯÀÚÀÇ Ç÷Àå¿¡¼­ ¾òÀº ¿¢¼ÒÁ»¿¡¼­´Â Àú»ê¼Ò¿Í °ü·ÃµÈ ´Ü¹éÁúÀÌ Áõ°¡µÈ °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [43]. NP69 ºñ°­ ¼¼Æ÷¿¡¼­ À¯·¡ÇÑ ¿¢¼ÒÁ»Àº HIF-1¥á ¹ßÇöÀÌ ³ô´Ù [44]. ±âÀü ¿¬±¸¿¡¼­´Â LMP1ÀÌ PHD¸¦ ¾ïÁ¦ÇÔÀ¸·Î½á HIF-1¥á¸¦ È°¼ºÈ­ÇÏ´Â °ÍÀ¸·Î ¹àÇôÁ³´Ù [45-47]. ¶ÇÇÑ, HIF-1¥á´Â DEC1ÀÇ Àü»ç¸¦ À¯µµÇÏ¿© »çÀÌÅäÄ«ÀÎ(cytokine)°ú ¼ºÀåÀÎÀÚ°¡ dzºÎÇÑ ¿¢¼ÒÁ»ÀÇ ¹æÃâÀ» ÃËÁøÇÑ´Ù [48, 49]. »Ó¸¸ ¾Æ´Ï¶ó, HIF´Â TNF-¥áÀÇ ¹ßÇöÀ» Áõ°¡½ÃÅ°°í, TNF-¥á´Â PRAS40À» ÅëÇØ ¿¢¼ÒÁ»ÀÇ ¹æÃâÀ» À¯µµÇÑ´Ù [50, 51].

±×¸² 1. ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º °úÁ¤ ¹× Àú»ê¼Ò À¯µµ ¼¼Æ÷¹Û¼ÒÆ÷ü ³» »ýüºÐÀÚ. Adapted from [52]
±×¸² 1. ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º °úÁ¤ ¹× Àú»ê¼Ò À¯µµ ¼¼Æ÷¹Û¼ÒÆ÷ü ³» »ýüºÐÀÚ. Adapted from [52]

   ´Ù¾çÇÑ À¯ÇüÀÇ ºñ¾Ïȣȭ RNA°¡ Àú»ê¼Ò¿¡ ÀÇÇØ Á¶ÀýµÈ´Ù [53]. MicroRNA (miRNA)´Â À¯ÀüÀÚ ¹ßÇö¿¡ °ü¿©Çϴ ªÀº Àü»ç¹°Áú·Î, ¼¼Æ÷¹Û¼ÒÆ÷ü ³»ºÎ¿¡ Æ÷ÇԵǴ ¹°Áú Áß ÇϳªÀÌ´Ù. ±¸°­ ÆíÆò¼¼Æ÷¾Ï¿¡¼­ À¯·¡ÇÑ ¿¢¼ÒÁ»ÀÇ miRNA-seq ºÐ¼®¿¡¼­´Â Àú»ê¼Ò¿¡ ÀÇÇØ 100¿© °³ ÀÌ»óÀÇ miRNA ¹ßÇöÀÌ º¯ÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [54]. ÀÌ¿Í À¯»çÇÏ°Ô, K562 °ñ¼ö¼º ¹éÇ÷º´ ¼¼Æ÷¿¡¼­µµ Àú»ê¼Ò¿¡ ÀÇÇØ ¿¢¼ÒÁ»¿¡ Æ÷ÇԵǴ miRNA ±¸¼ºÀÌ ¿µÇâÀ» ¹Þ¾Ò´Ù [55]. HIF-1/2¥á´Â Àú»ê¼Ò À¯µµ ¿¢¼ÒÁ» ³» miR-21ÀÇ ¹ßÇöÀ» Áõ°¡½ÃÄÑ ¼¼Æ÷ÀÇ ÀÌÁÖ ¹× ħÀ±À» ÃËÁøÇÑ´Ù [54]. ¶ÇÇÑ, Æó¾Ï ¼¼Æ÷´Â Àú»ê¼Ò À¯µµ ¿¢¼ÒÁ»À» ÅëÇØ miR-23a¸¦ Àü´ÞÇÏ¿© ¼ö¿ë ¼¼Æ÷ÀÇ PHD1/2¸¦ ¾ïÁ¦ÇÏ°í HIF-1¥á ¾ÈÁ¤È­¸¦ À¯µµÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [20]. ¾Ï¼¼Æ÷¿Í ¸¶Âù°¡Áö·Î, Àΰ£ ¸»ÃÊ ÇãÇ÷¼º Áٱ⼼Æ÷µµ Àú»ê¼Ò¿¡ ÀÇÇØ ´Ù¾çÇÑ miRNAÀÇ ¹ßÇöÀÌ Á¶ÀýµÇ´Â °ÍÀ¸·Î ¹àÇôÁ³´Ù [56].

   ÇÏÁö¸¸ ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡ ÀÇÇÑ miRNA ¿î¹Ý¿¡ ´ëÇؼ­´Â ³íÀïÀÌ ÀÖ´Ù. ÃÖ±Ù ¿¬±¸¿¡ µû¸£¸é miRNA°¡ ´ÜÁö ¼Ò¼öÀÇ ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡¼­¸¸ Á¸ÀçÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [57]. ´Ù¾çÇÑ Àΰ£ ü¾×¿¡ ´ëÇÑ ¾çÀûºÐ¼®À» ÇÑ ¿¬±¸¿¡¼­´Â ¾ÆÁÖ ¼Ò¼öÀÇ miRNA¸¸ÀÌ ¿¢¼ÒÁ»¿¡¼­ È®ÀεǾú´Ù [58]. ¼¼Æ÷ ¿ÜºÎ¿¡ Á¸ÀçÇÏ´Â miRNA´Â ¼¼Æ÷¹Û¼ÒÆ÷ü°¡ ¾Æ´Ñ RNA °áÇÕ ´Ü¹éÁú°ú ¿¬°üµÇ¾î ÀÖÀ» °¡´É¼ºµµ ³ô´Ù. ¼¼Æ÷ ¿ÜºÎÀÇ miRNA°¡ ´ëºÎºÐ RNA °áÇÕ ´Ü¹éÁúÀÎ Argonaute-2¿¡ °áÇյǾî ÀÖ´Ù°í º¸°íÇÑ ¿¬±¸µµ ÀÖ´Ù [59, 60]. ¹Ý¸é, ¶Ç ´Ù¸¥ ¿¬±¸¿¡¼­´Â Argonaute-2°¡ ƯÁ¤ miRNA¸¦ ¿¢¼ÒÁ»¿¡ žÀçÇÏ´Â ¿ªÇÒÀ» ÇÑ´Ù°í ÁÖÀåÇÏ¿´´Ù [61]. ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡ ÀÇÇÑ miRNA ¿î¹Ý¿¡ °üÇؼ­´Â Ãß°¡ÀûÀÎ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.

   Àú»ê¼Ò ȯ°æÀº ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ Å©±â ¹× ºÐÆ÷¿¡µµ ¿µÇâÀ» ÁÙ ¼ö ÀÖ´Ù. ´ëÀå¾Ï ¼¼Æ÷ÀÎ SW480°ú HCT116¿¡¼­ Àú»ê¼Ò´Â ¿¢¼ÒÁ» ÀÔÀÚÀÇ Å©±â¸¦ °¨¼Ò½ÃÄ×´Ù [98]. ¸¶Âù°¡Áö·Î Àü¸³¼±¾Ï ¼¼Æ÷ÀÎ LNCaP°ú PC3¿¡¼­µµ Àú»ê¼Ò°¡ ¿¢¼ÒÁ» Å©±â¸¦ ÁÙ¿´´Ù [62]. ±×·¯³ª, ¸¶¿ì½º °ñ¼ö Áß°£¿± Áٱ⼼Æ÷¿¡¼­´Â Àú»ê¼Ò Á¶°ÇÀÌ ¿¢¼ÒÁ» Å©±â¸¦ Áõ°¡½ÃÅ°´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [63]. ´Ù¸¥ ¿¬±¸¿¡¼­´Â Àú»ê¼Ò Á¶°ÇÀÌ ¿¢¼ÒÁ»ÀÇ Æò±Õ Å©±â¿¡ ¿µÇâÀ» ÁÖÁö ¾Ê´Â °ÍÀ¸·Î º¸°íµÇ¾ú´Ù [19]. ÃéÀå¾Ï ¼¼Æ÷ÀÎ MiaPaCa¿Í AsPC1¿¡¼­´Â ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ Å©±â°¡ ¼ÒÆ÷üÀÇ À¯Çü°ú Àú»ê¼ÒÀÇ ½É°¢µµ¿¡ µû¶ó °¨¼ÒÇϰųª Áõ°¡ÇÒ ¼ö ÀÖ´Ù°í º¸°íµÇ¾ú´Ù. [64]. Àú»ê¼Ò¿¡ ÀÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ Å©±â Á¶Àý ±âÀü°ú Å©±âÀÇ º¯È­°¡ ±â´É¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇؼ­´Â Ãß°¡ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.

4. ¼¼Æ÷¹Û¼ÒÆ÷ü ¾ïÁ¦Á¦

   ¼¼Æ÷¹Û¼ÒÆ÷ü ¾ïÁ¦Á¦´Â ¾ÏÀ» ºñ·ÔÇÏ¿© Àú»ê¼Ò¼º ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡ ÀÇÇØ ¾ÇÈ­µÇ´Â Áúȯ¿¡¼­ ÇϳªÀÇ Ä¡·á Àü·«ÀÌ µÉ ¼ö ÀÖ´Ù. ÇöÀç ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâ °úÁ¤À» ¾ïÁ¦ÇÒ ¼ö ÀÖ´Â ´Ù¾çÇÑ ¾à¹°ÀÌ °³¹ß ÁßÀÌ´Ù [11, 65]. GW4869Àº neutral sphingomyelinase 2 (nSMase2)ÀÇ ¼±ÅÃÀû ºñ°æÀïÀû ¾ïÁ¦Á¦ÀÌ´Ù. nSMase2´Â sphingomyelinÀ» °¡¼öºÐÇØÇÏ¿© ceramide¸¦ »ý¼ºÇϴµ¥, ÀÌ ceramide´Â ¼¼Æ÷¹Û¼ÒÆ÷ü ¹æÃâ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù [66, 67]. Àú»ê¼Ò Á¶°Ç¿¡¼­ GW4869Àº ¼¼Æ÷¹Û¼ÒÆ÷ü ¹æÃâÀ» ¾ïÁ¦Çϸç, ¸¶¿ì½º Èæ»öÁ¾ ¸ðµ¨¿¡¼­ Á¾¾çÁ¶Á÷ ³»¿¡ ÁÖÀÔµÈ GW4869Àº ¾Ï ¼ºÀåÀ» ¾ïÁ¦ÇÏ°í ¸¶¿ì½ºÀÇ »ýÁ¸ ±â°£À» ¿¬ÀåÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù [68-70]. ¸¶Âù°¡Áö·Î, dimethylamiloride (DMA)´Â Àú»ê¼Ò·Î ÀÎÇÑ ¾Ï ÁøÇàÀ» ¾ïÁ¦ÇÏ´Â ¼¼Æ÷¹Û¼ÒÆ÷ü »ý¼º ÀúÇØÁ¦·Î ÀÛ¿ëÇÑ´Ù [69]. DMA´Â Ä®½· ä³ÎÀÇ ±â´ÉÀ» ¼Õ»ó½ÃÅ°´Â amilorideÀÇ À¯µµÃ¼·Î, ´ÙÁß¼ÒÆ÷ü°¡ ¿øÇüÁú¸·°ú À¶ÇÕÇÏ´Â µ¥ ÇÊ¿äÇÑ ¼¼Æ÷ ³» Ä®½· ³óµµ¸¦ °¨¼Ò½ÃÄÑ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ºÐºñ¸¦ ¾ïÁ¦ÇÑ´Ù [71, 72].

5. ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ ÅëÇÑ ¾à¹° Àü´Þ

   ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ´Ù¸¥ °íºÐÀÚ ±â¹Ý ¿î¹Ýü¿¡ ºñÇØ ³ôÀº »ýü ÀûÇÕ¼º°ú ³·Àº ¸é¿ª¿ø¼ºÀ» °¡Áö°í ÀÖ¾î, È¿°úÀûÀÎ ¾à¹° Àü´Þ ½Ã½ºÅÛÀ¸·Î »ç¿ëµÉ ¼ö ÀÖ´Ù [73]. ±×·¯³ª ÃÖ±Ù ¿¬±¸¿¡¼­´Â ÃæºÐÇÑ ¾çÀÇ ¼¼Æ÷¹Û¼ÒÆ÷ü¿¡ Àå±â°£ ÀÌ»ó ³ëÃâµÉ °æ¿ì ¼ö¿ëÀÚÀÇ ¸é¿ª ½Ã½ºÅÛÀÌ È°¼ºÈ­µÉ ¼ö ÀÖ´Ù´Â Áõ°Åµµ Á¦½ÃµÇ¾ú´Ù. ÀÌ·¯ÇÑ ¸é¿ª ¹ÝÀÀÀº ÁÖ·Î ¼ÒÆ÷ü ¸·ÀÇ ºÐÀÚ³ª ¸é¿ª Á¶Àý ÀÎÀÚ¿¡ ÀÇÇØ À¯¹ßµÉ °¡´É¼ºÀÌ ÀÖÀ¸¸ç, ÀÌ´Â ¼¼Æ÷¹Û¼ÒÆ÷ü°¡ ±â¿øÇÏ´Â ¼¼Æ÷¿¡ µû¶ó ´Ù¸¦ ¼ö ÀÖ´Ù [74]. ±×·³¿¡µµ ºÒ±¸ÇÏ°í, ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ¼¼Æ÷¿¡ ÀÇÇØ ÀÚ¿¬ÀûÀ¸·Î »ý¼ºµÇ´Â ¹°ÁúÀ̱⠶§¹®¿¡ ´Ù¸¥ ½Ã½ºÅÛ¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ¸é¿ª¿ø¼º°ú µ¶¼ºÀÌ ³·´Ù°í ¿©°ÜÁø´Ù.

   ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¶Ç ´Ù¸¥ Ư¡Àº ƯÁ¤ Á¶Á÷À» Ç¥ÀûÀ¸·Î ÇÒ ¼ö ÀÖ´Â ³»ÀçµÈ ´É·ÂÀÌ´Ù. µ¿¹°¸ðµ¨¿¡¼­ ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ÁÖ·Î °£, ºñÀå, Æó Á¶Á÷À¸·Î ºÐÆ÷ÇÑ´Ù. ±×·¯³ª ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ýü ³» ºÐÆ÷´Â ±â¿øÇÏ´Â ¼¼Æ÷¿Í Åõ¿© °æ·Î¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ´Ù [75]. ¿¹¸¦ µé¾î, ¼öÁö»ó¼¼Æ÷¿¡¼­ À¯·¡ÇÑ ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ºñÀå¿¡ ¸¹ÀÌ ÃàÀûµÇ´Âµ¥, ÀÌ´Â ¸é¿ªÀû ±â¿ø°úÀÇ ¿¬°ü¼ºÀ» º¸¿©ÁØ´Ù [76]. ¾Ï¿¡¼­ À¯·¡ÇÑ ¼¼Æ÷¹Û¼ÒÆ÷ü´Â Á¾¾ç ¹Ì¼¼È¯°æ¿¡¼­ Á¤»ó ¼¼Æ÷º¸´Ù ¾Ï¼¼Æ÷¿¡ ´õ °­ÇÏ°Ô ºÎÂøÇÑ´Ù´Â º¸°íµµ ÀÖ´Ù [77].

   ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ Æ¯Á¤ Á¶Á÷¿¡ ´ëÇÑ ¼±È£µµ ¹× ³»ºÎÈ­¸¦ Áõ°¡½ÃÅ°´Â Àü·«Àº ´Ù¾çÇÏ´Ù [12, 78-81]. À¯Àü°øÇÐÀ̳ª ¼ÒÆ÷ü À¶ÇÕÀ» ÅëÇØ ´Ü¹éÁú, ÁöÁú, ´ç°ú °°Àº ºÐÀÚ¸¦ ¸· Ç¥¸é¿¡ »ðÀÔÇϰųª ¼öÁ¤ÇÒ ¼ö ÀÖ´Ù [82-85]. ¹°¸®Àû ¶Ç´Â È­ÇÐÀû ¹æ¹ýÀ¸·Î´Â µ¿°á-Çص¿, ÃÊÀ½ÆÄ, Àü±â, ÀÚ±âÀå, °è¸éÈ°¼ºÁ¦ µîÀ» È°¿ëÇÒ ¼ö ÀÖ´Ù [86]. ¶ÇÇÑ ¼¼Æ÷¹Û¼ÒÆ÷ü¸¦ ÀÌ½Ä °¡´ÉÇÑ »ýüÀç·á¿¡ °áÇÕ½ÃÄÑ »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, »ýüÀç·áÀÇ Æ¯¼º¿¡ µû¶ó ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ´Ü±â ¶Ç´Â Àå±â ¹æÃâÀ» Á¶ÀýÇÒ ¼ö ÀÖ´Ù [87-91]. ¿¹¸¦ µé¾î, silk fibroin hydrogel¿¡ °áÇÕµÈ Àú»ê¼Ò¼º ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ¼­¹æÇüÀ¸·Î ¿¬°ñ Àç»ýÀ» ÃËÁøÇÑ´Ù [92]. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ³»ÀçÀû Ư¼ºÀ¸·Î ÀÎÇØ °£, ºñÀå, Æó¸¦ ¼±È£ÇϹǷΠ´Ù¸¥ Á¶Á÷¿¡ ´ëÇÑ ¿øÇÏ´Â ¼öÁØÀÇ Àü´ÞÀ» ´Þ¼ºÇÏÁö ¸øÇÒ ¼ö ÀÖ´Ù. ¶Ç ´Ù¸¥ °úÁ¦´Â Àú»ê¼Ò ȯ°æ¿¡¼­ À¯µµµÇ´Â endocyclic recycling °úÁ¤ÀÇ ¾ïÁ¦ÀÌ´Ù. Ç¥Àû¼¼Æ÷¿¡ µé¾î°£ ¼¼Æ÷¹Û¼ÒÆ÷ü´Â ¸®¼ÒÁ»°ú À¶ÇÕÇÏ¿© »ê¼º ȯ°æ¿¡¼­ ¼ÒÆ÷ü ¾È ³»¿ë¹°À» ¹æÃâÇÏÁö¸¸, Àú»ê¼Ò ȯ°æ¿¡¼­´Â ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ ¹æÃâÀÌ Áõ°¡ÇÏ¿© ¾ÈÁ¤ÀûÀÎ ³»¿ë¹°ÀÇ Àü´ÞÀÌ ÀúÇØµÉ ¼ö ÀÖ´Ù [93].

[°á·Ð]

   ¼¼Æ÷¹Û¼ÒÆ÷ü »ý¼ºÀ» Á¶ÀýÇÏ´Â ¾à¹° °³¹ßÀº ¾ÏÀ» Æ÷ÇÔÇÑ Àú»ê¼Ò ¿¬°ü Áúȯ Ä¡·á¿¡ ÀÖ¾î À¯¸ÁÇÑ Àü·«À̸ç, ¼¼Æ÷¹Û¼ÒÆ÷ü ±â¹ÝÀÇ ¾à¹° Àü´Þ ½Ã½ºÅÛÀº ³ôÀº »ýü ÀûÇÕ¼º°ú ³·Àº ¸é¿ª¼ºÀ» Áö³à À¯¿ëÇÑ ¼ö´ÜÀÌ µÉ ¼ö ÀÖ´Ù. µû¶ó¼­, Àú»ê¼Ò ȯ°æÀÌ ¼¼Æ÷¹Û¼ÒÆ÷üÀÇ »ý¼º ¹× ¹æÃâ, ±×¸®°í ±×µéÀÌ ¿î¹ÝÇÏ´Â ¹°Áú°ú Ư¼º¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ±íÀÌ ÀÌÇØÇϱâ À§ÇÑ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.

Âü°í¹®Çå

  • 1

    Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles 2020; 10: e12002.

  • 2

    Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019; 8.

  • 3

    Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 2018; 39: 501-513.

  • 4

    Battistelli M, Falcieri E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology (Basel) 2020; 9.

  • 5

    Stahl AL, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34: 11-30.

  • 6

    Ratajczak MZ, Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? Leukemia 2020; 34: 3126-3135.

  • 7

    Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9: 19.

  • 8

    Witwer KW, Thery C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles 2019; 8: 1648167.

  • 9

    Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750.

  • 10

    He G, Peng X, Wei S, Yang S, Li X, Huang M et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer 2022; 21: 19.

  • 11

    Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp Mol Med 2022; 54: 1833-1843.

  • 12

    Chen H, Wang L, Zeng X, Schwarz H, Nanda HS, Peng X et al. Exosomes, a New Star for Targeted Delivery. Front Cell Dev Biol 2021; 9: 751079.

  • 13

    McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Molecular Cancer 2019; 18.

  • 14

    Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y et al. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022; 13: 824188.

  • 15

    Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 2009; 125: 1595-1603.

  • 16

    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 2012; 12: 421.

  • 17

    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1.

  • 18

    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92: 5510-5514.

  • 19

    Zhang W, Zhou XJ, Yao QS, Liu YT, Zhang H, Dong Z. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells. Am J Physiol-Renal 2017; 313: F906-F913.

  • 20

    Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 2017; 36: 4929-4942.

  • 21

    Muniz-Garcia A, Romero M, Falcomicronn-Perez JM, Murray P, Zorzano A, Mora S. Hypoxia-induced HIF1alpha activation regulates small extracellular vesicle release in human embryonic kidney cells. Sci Rep 2022; 12: 1443.

  • 22

    Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal 2021; 19: 47.

  • 23

    Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 2012; 31: 4740-4749.

  • 24

    Loomis RJ, Holmes DA, Elms A, Solski PA, Der CJ, Su L. Citron kinase, a RhoA effector, enhances HIV-1 virion production by modulating exocytosis. Traffic 2006; 7: 1643-1653.

  • 25

    Wang ZQ, Jin NJ, Ganguli S, Swartz DR, Li L, Rhoades RA. Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am J Resp Cell Mol 2001; 25: 628-635.

  • 26

    Ozturk E, Hobiger S, Despot-Slade E, Pichler M, Zenobi-Wong M. Hypoxia regulates RhoA and Wnt/beta-catenin signaling in a context-dependent way to control re-differentiation of chondrocytes. Sci Rep 2017; 7: 9032.

  • 27

    Zhang JG, Zhou HM, Zhang X, Mu W, Hu JN, Liu GL et al. Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 alpha, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer 2020; 20: 32.

  • 28

    Lu C, Mahajan A, Hong SH, Galli S, Zhu S, Tilan JU et al. Hypoxia-activated neuropeptide Y/Y5 receptor/RhoA pathway triggers chromosomal instability and bone metastasis in Ewing sarcoma. Nat Commun 2022; 13: 2323.

  • 29

    Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R et al. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics 2020; 10: 8211-8226.

  • 30

    Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C et al. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer 2019; 18: 78.

  • 31

    Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629: 16-28.

  • 32

    Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. Febs Journal 2021; 288: 36-55.

  • 33

    Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2014; 111: E3234-3242.

  • 34

    Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C et al. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8(+) T Cell Responses. Immunity 2019; 50: 738-750 e737.

  • 35

    Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA et al. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene 2018; 37: 3806-3821.

  • 36

    Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Biol 2021; 220.

  • 37

    van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 2022; 23: 369-382.

  • 38

    Nakashima A, Cheng SB, Ikawa M, Yoshimori T, Huber WJ, Menon R et al. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy 2020; 16: 1771-1785.

  • 39

    Wang X, Wu R, Zhai P, Liu Z, Xia R, Zhang Z et al. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1alpha. J Extracell Vesicles 2023; 12: e12310.

  • 40

    Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metast Rev 2019; 38: 93-101.

  • 41

    Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 2013; 4: 354.

  • 42

    Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 2010; 9: 1085-1099.

  • 43

    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 2013; 110: 7312-7317.

  • 44

    Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N et al. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 2014; 33: 4613-4622.

  • 45

    Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I et al. EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 2006; 66: 9870-9877.

  • 46

    Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 2004; 24: 5223-5234.

  • 47

    Moller A, House CM, Wong CS, Scanlon DB, Liu MC, Ronai Z et al. Inhibition of Siah ubiquitin ligase function. Oncogene 2009; 28: 289-296.

  • 48

    Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J Biol Chem 2002; 277: 47014-47021.

  • 49

    Sethuraman A, Brown M, Krutilina R, Wu ZH, Seagroves TN, Pfeffer LM et al. BHLHE40 confers a pro-survival and pro-metastatic phenotype to breast cancer cells by modulating HBEGF secretion. Breast Cancer Res 2018; 20: 117.

  • 50

    Yu X, Deng L, Wang D, Li N, Chen X, Cheng X et al. Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol 2012; 53: 848-857.

  • 51

    Guo J, Jayaprakash P, Dan J, Wise P, Jang GB, Liang C et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol 2017; 37.

  • 52

    Yoo S, Choi S, Kim I, Kim IS. Hypoxic regulation of extracellular vesicles: Implications for cancer therapy. J Control Release 2023; 363: 201-220.

  • 53

    Wang W, Han Y, Jo HA, Lee J, Song YS. Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 2020; 13: 67.

  • 54

    Li L, Li C, Wang S, Wang Z, Jiang J, Wang W et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res 2016; 76: 1770-1780.

  • 55

    Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 2013; 288: 34343-34351.

  • 56

    Zang HF, Wang ZH, Wu QQ, Shi L, Chen G. Effect of hypoxia on the expression of microRNA in extracellular vesicles of human umbilical cord stem cells in vitro. Cell Tissue Bank 2023.

  • 57

    Albanese MT, Chen YFA, Huels C, Gaertner K, Tagawa TK, Mejias-Perez E et al. MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. Plos Genet 2021; 17.

  • 58

    Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. P Natl Acad Sci USA 2014; 111: 14888-14893.

  • 59

    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Research 2011; 39: 7223-7233.

  • 60

    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. P Natl Acad Sci USA 2011; 108: 5003-5008.

  • 61

    Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13: 357.

  • 62

    Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 2015; 54: 554-565.

  • 63

    Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 2018; 8: 6163-6177.

  • 64

    Patton MC, Zubair H, Khan MA, Singh S, Singh AP. Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. J Cell Biochem 2020; 121: 828-839.

  • 65

    Catalano M, O'Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 2020; 9: 1703244.

  • 66

    Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 2004; 4: 604-616.

  • 67

    Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 2015; 57: 24-41.

  • 68

    Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T et al. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discov Today 2021; 26: 1656-1668.

  • 69

    Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep 2018; 8: 3853.

  • 70

    Matsumoto A, Takahashi Y, Nishikawa M, Sano K, Morishita M, Charoenviriyakul C et al. Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci 2017; 108: 1803-1810.

  • 71

    Savina A, Furlan M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 2003; 278: 20083-20090.

  • 72

    Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010; 120: 457-471.

  • 73

    Saleh AF, Lazaro-Ibanez E, Forsgard MAM, Shatnyeva O, Osteikoetxea X, Karlsson F et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale 2019; 11: 6990-7001.

  • 74

    Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM et al. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev 2021; 175: 113775.

  • 75

    Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mager I et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015; 4: 26316.

  • 76

    Wei G, Jie Y, Haibo L, Chaoneng W, Dong H, Jianbing Z et al. Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep 2017; 7: 42996.

  • 77

    Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta 2014; 1838: 2954-2965.

  • 78

    Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of Exosomes and Engineering Strategies for Targeted Delivery of Therapeutic Exosomes. Tissue Eng Regen Med 2021; 18: 499-511.

  • 79

    Alvarez-Erviti L, Seow YQ, Yin HF, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29: 341-U179.

  • 80

    Zhuang WZ, Yuan SS, Li BZ. Exosome Engineering for Targeted and Efficient Intracellular Delivery of Bortezomib. Blood 2022; 140: 4234-4235.

  • 81

    Liang YJ, Duan L, Lu JP, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021; 11: 3183-3195.

  • 82

    Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16: 81.

  • 83

    Kim GB, Nam GH, Hong Y, Woo J, Cho Y, Kwon IC et al. Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Sci Adv 2020; 6.

  • 84

    Hong Y, Nam GH, Koh E, Jeon S, Kim GB, Jeong C et al. Exosome as a Vehicle for Delivery of Membrane Protein Therapeutics, PH20, for Enhanced Tumor Penetration and Antitumor Efficacy. Adv Funct Mater 2018; 28.

  • 85

    Yang YS, Hong YS, Nam GH, Chung JH, Koh E, Kim IS. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes. Adv Mater 2017; 29.

  • 86

    Fu SY, Wang Y, Xia XH, Zheng JLC. Exosome engineering: Current progress in cargo loading and targeted delivery. Nanoimpact 2020; 20.

  • 87

    Yerneni SS, Lathwal S, Cuthbert J, Kapil K, Szczepaniak G, Jeong J et al. Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules 2022; 23: 1713-1722.

  • 88

    Swanson WB, Zhang Z, Xiu KM, Gong T, Eberle M, Wang ZQ et al. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomaterialia 2020; 118: 215-232.

  • 89

    Cui JT, Wang XY, Mu XD, Huang M, Wang YD, Luo Q et al. Bone marrow stromal cell-derived exosome combinate with fibrin on tantalum coating titanium implant accelerates osseointegration. Front Bioeng Biotechnol 2023; 11: 1198545.

  • 90

    Brennan MA, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater 2020; 30.

  • 91

    Li LM, Mu JF, Zhang Y, Zhang CY, Ma T, Chen L et al. Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair. Acs Nano 2022; 16: 10811-10823.

  • 92

    Shen K, Duan A, Cheng JQ, Yuan T, Zhou JC, Song HH et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomaterialia 2022; 143: 173-188.

  • 93

    Tong B, Liao Z, Liu H, Ke W, Lei C, Zhang W et al. Augmenting Intracellular Cargo Delivery of Extracellular Vesicles in Hypoxic Tissues through Inhibiting Hypoxia-Induced Endocytic Recycling. ACS Nano 2023; 17: 2537-2553.

ÀúÀÚ¾à·Â

  • 2012

    °í·Á´ëÇб³ ÀÌ°ú´ëÇÐ È­Çаú, Çлç

  • 2016

    °æºÏ´ëÇб³ ÀÇÇÐÀü¹®´ëÇпø ÀÇÇаú, ¼®»ç

  • 2019

    ¼­¿ï´ëÇб³ ´ëÇпø ÀÇ°úÇаú, ¹Ú»ç

  • 2019-2021

    ¼­¿ï´ëÇб³ ÀÇÇבּ¸¿ø ÇãÇ÷Àú»ê¼ÒÁúȯ¿¬±¸¼Ò, ¿¬¼ö¿¬±¸¿ø

  • 2021-ÇöÀç

    ÀÎÇÏ´ëÇб³ ÀÇ°ú´ëÇÐ ¾à¸®Çб³½Ç, Á¶±³¼ö