¿¬±¸½Ç/¿¬±¸´Ü Ž¹æ

±Ç¼®±Ô
KIST ±â´ÉÄ¿³ØÅä¹Í½º¿¬±¸´Ü ºÐÀÚ¼¼Æ÷
½Å°æ»ý¹°ÇÐ ½ÇÇè½Ç
±Ç¼®±Ô KIST(³ú°úÇבּ¸¼Ò ±â´ÉÄ¿³ØÅä¹Í½º¿¬±¸´Ü) ¸ÞÀÏ skkwon@kist.re.kr

¿¬±¸½Ç °³¿ä

KIST ºÐÀÚ¼¼Æ÷ ½Å°æ»ý¹°ÇÐ ½ÇÇè½ÇÀº 2018³â 3¿ù¿¡ ½ÃÀÛÇÑ ½Å»ý ½ÇÇè½Ç·Î ¼­¿ï KIST ³ú°úÇבּ¸¼Ò¿¡ ¼ÓÇØ ÀÖ½À´Ï´Ù. KIST´Â 1966³â¿¡ ¼¼¿öÁø ´ëÇѹα¹ ÃÖÃÊÀÇ Á¤ºÎÃ⿬¿¬±¸¼Ò·Î¼­ ¹ÝµµÃ¼, ·Îº¿, ÀÇ°øÇÐ, ³ú°úÇÐ, ¿¡³ÊÁö µî ´Ù¾çÇÑ ºÐ¾ßÀÇ Á¾ÇÕ ¿¬±¸¸¦ ¼öÇàÇÏ°í ÀÖ½À´Ï´Ù. ÀúÈñ KIST ³ú°úÇבּ¸¼Ò¿¡´Â ½Å°æȸ·Î, ÀÎÁö ¹× ¿îµ¿±â´É, ÅðÇ༺ ½Å°æÁúȯ, ¾à¹° °³¹ß, ¸¶ÀÌÅ©·Î ¿£Áö´Ï¾î¸µ µî ´Ù¾çÇÑ ¹è°æÀ» °¡Áø ¿¬±¸ÀںеéÀÌ ¸ð¿© ¼¼°èÀûÀ¸·Î °æÀï·ÂÀÖ´Â ¿¬±¸µéÀ» ÁøÇàÇÏ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Á¦°¡ ¼ÓÇÑ ±â´ÉÄ¿³ØÅä¹Í½º¿¬±¸´ÜÀÇ °æ¿ì, ¹Ì±¹, ÀϺ», Áß±¹, ij³ª´Ù µî ´Ù¾çÇÑ ±¹ÀûÀ» °¡Áø Principal Investigator (PI)ºÐµéÀÌ °è¼Å¼­ ÀÚÀ¯·Î¿î ºÐÀ§±âÀÇ ¿¬±¸È¯°æÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
ÀúÈñ ½ÇÇè½Ç(https://kwonlab.wixsite.com/mysite/)¿¡¼­´Â ½Å°æ¼¼Æ÷¿¡¼­ÀÇ ¼¼Æ÷³» ¼Ò±â°üÀÌ Ä®½· Á¶ÀýÀ» ÅëÇØ ½Ã³À½º¿¡ ¾î¶°ÇÑ ¿µÇâÀ» ÁÖ´ÂÁö¸¦ ´Ù¾çÇÑ ½ÇÇè ¹æ¹ýÀ» ÅëÇØ ±Ô¸íÇÏ°íÀÚ ÇÏ°í ÀÖÀ¸¸ç, ÇöÀç ¹Ú»ç ÈÄ ¿¬±¸¿ø 1¸í, ¼®»ç°úÁ¤ Çлý 1¸í, ÀÎÅÏ¿¬±¸¿ø 1¸í°ú ÇÔ²² ¿¬±¸¸¦ ÁøÇà ÁßÀÔ´Ï´Ù. Àç¹Õ´Â ÁÖÁ¦¿¡ ´ëÇÑ Å½±¸¸¦ ´õ ¸¹Àº ºÐµé°ú ÇÔ²²Çϱâ À§ÇØ ¼®»ç ¹× ¹Ú»ç°úÁ¤ Çлý, Æ÷½º´ÚºÐµéÀ» ã°í ÀÖÀ¸´Ï °ü½ÉÀÖÀ¸½Å ºÐµéÀº ¾ðÁ¦µç ¿¬¶ôÁÖ¼¼¿ä.

¾Æ·¡¿¡ ÀúÈñÀÇ ¿¬±¸ ¹è°æ ¹× ÁÖÁ¦¸¦ ¼³¸í µå¸®°Ú½À´Ï´Ù.

¿¬±¸ ¹è°æ

¿ì¸® ¸öÀÇ ±â´ÉÀÌ ½ÉÀå, °£, ³ú¿Í °°Àº ´Ù¾çÇÑ ±â°ü(organ)µé¿¡ ÀÇÇØ Á¶ÀýÀÌ µÇµíÀÌ °¢°¢ÀÇ ¼¼Æ÷µéµµ ¿©·¯°¡Áö ¼¼Æ÷³» ¼Ò±â°ü(intracellular organelle)µé¿¡ ÀÇÇØ ±â´ÉÀÌ Á¶À²µË´Ï´Ù. ½Å°æ¼¼Æ÷¿¡µµ ÀÌ·¯ÇÑ ¼¼Æ÷³» ¼Ò±â°üµéÀÌ Á¸ÀçÇÏ°í ÀÖÀ¸¸ç, ƯÈ÷ À̵é Áß ¿¡³ÊÁö »ý»ê, Áï ATP »ý»ê¿¡ °ü¿©ÇÑ´Ù ¾Ë·ÁÁø mitochondria (¸¶ÀÌÅäÄܵ帮¾Æ)¿Í ´Ü¹éÁú ÇÕ¼º µî¿¡ °ü¿©ÇÏ´Â endoplasmic reticulum (ER, ¼ÒÆ÷ü)ÀÌ Å« º¼·ýÀ» Â÷ÁöÇÏ°í ÀÖ½À´Ï´Ù. ÀÌµé ¼Ò±â°üÀº ¼¼Æ÷³» Ä®½·À» Èí¼öÇϰųª ³»º¸³¿À¸·Î½á ³óµµ¸¦ Á¶ÀýÇÒ ¼ö Àִµ¥ ÀÌ·¯ÇÑ Ä®½· ³óµµ´Â ½Å°æ¼¼Æ÷ ±â´É¿¡ ±²ÀåÈ÷ Áß¿äÇÑ ±â´ÉÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´õÇØ ER°ú mitochondria´Â ¼­·Î ±¸Á¶ÀûÀ¸·Î ¿¬°áµÇ¾î mitochondria-ER contacts (MERCs) ȤÀº mitochondria-associated ER membrane (MAM)À̶ó ºÒ¸®¿ì´Â ±¸Á¶¸¦ Çü¼ºÇϴµ¥ ÀÌ´Â ÁöÁú(lipid) ÇÕ¼º, mitochondria ¸ð¾ç Á¶Àý ¹× Ä®½· À̵¿ µî¿¡ °ü¿©ÇÑ´Ù°í ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù[1-3]. ÀÌ·¯ÇÑ ¿¬°áÀº ¿©·¯ ½Å°æÅðÇ༺ Áúȯ¿¡µµ ¿¬°üµÇ¾î ÀÖÀ½ÀÌ Áö¼ÓÀûÀ¸·Î º¸°í µÇ°í ÀÖÁö¸¸ ¾ÆÁ÷ ½Å°æ¼¼Æ÷¿¡¼­ ÀÌµé ¼Ò±â°üÀÇ Ä®½· Á¶ÀýÀÌ ½Ã³À½º ±â´É¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿¬±¸´Â ±â¼úÀûÀÎ ÇÑ°è·Î ¸¹ÀÌ ÁøÇàµÇÁö ¾Ê¾Æ ÀúÈñ ¿¬±¸½Ç¿¡¼­´Â ÀÌ·¯ÇÑ ¼Ò±â°üµéÀÇ ½Ã³À½º¿¡¼­ÀÇ ¿ªÇÒÀ» È°¹ßÈ÷ ¿¬±¸ÇÏ°í ÀÖ½À´Ï´Ù.


ÇϳªÀÇ ½Å°æ¼¼Æ÷¿¡¼­ ºÎÀ§º°·Î ƯÀÌÀûÀÎ mitochondriaÀÇ ¸ð¾ç (Nature Communications, 2018)

½Å°æ¼¼Æ÷´Â ½ÅÈ£¸¦ ÁÖ´Â axon (Ãà»èµ¹±â)¿Í ½ÅÈ£¸¦ ¹Þ´Â dendrite (¼ö»óµ¹±â)°¡ cell body (¼¼Æ÷ü)·ÎºÎÅÍ °¡Áö ¸ð¾çÀ¸·Î »¸¾î³ª¿Â µ¶Æ¯ÇÑ polarized structure¸¦ °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´õÇØ ¼¼Æ÷³» ¼Ò±â°ü ¶ÇÇÑ axon°ú dendrite¿¡¼­ ¿ÏÀüÈ÷ ´Ù¸¥ ¸ð¾çÀ» º¸¿©ÁÝ´Ï´Ù (±×¸² 1). Axon¿¡¼­ÀÇ mitochondria´Â ÀÛ°í µÕ±Ù ¸ð¾çÀ» ÇÏ°í ÀÖÀ¸¸ç, dendrite¿¡¼­´Â ±ä Æ©ºê¸ð¾çÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ mitochondriaÀÇ ¸ð¾çÀº fusion°ú fission¿¡ ÀÇÇؼ­ Á¶ÀýµÉ ¼ö Àִµ¥¿ä, ¾ËÃ÷ÇÏÀ̸ӳª ÆÄŲ½¼ µî ÅðÇ༺ ½Å°æÁúȯ¿¡¼­ mitochondria°¡ ÀÛ°Ô ÂÉ°³Áø ¸ð¾çµé·Î Á¸ÀçÇÏ´Â °ÍÀÌ °üÂûµÇ¾î ¿Ô½À´Ï´Ù[4-6]. ÇÏÁö¸¸ ÀÌµé ¸ð¾çÀÌ Á¤»óÀûÀÎ Á¶°Ç¿¡¼­ ¾î¶»°Ô À¯ÁöµÇ´ÂÁö¿¡ ´ëÇÑ ¿¬±¸´Â ºÎÁ·Çß¾ú½À´Ï´Ù.

±×¸² 1. Axon°ú DendriteÀÇ mitochondria ¸ð¾ç
±×¸² 1. Axon°ú DendriteÀÇ mitochondria ¸ð¾ç

ÀúÈñ ½ÇÇè½Ç¿¡¼­´Â dendrite¿¡¼­ ±æ°í axon¿¡¼± ÀÛÀº mitochondria ¸ð¾ç¿¡ ±Ù°ÅÇÏ¿© dendrite¿¡¼­´Â mitochondrial fusionÀÌ axon¿¡¼­´Â mitochondrial fissionÀÌ dominantÇÏ´Ù´Â °¡¼³À» ¼¼¿ì°í ¿¬±¸¸¦ ÁøÇàÇß½À´Ï´Ù. À̸¦ À§ÇØ mitochondrial fission°ú °ü·ÃÇÑ ´Ü¹éÁú Áß ½Å°æ¼¼Æ÷¿¡ ¸¹Àº MFF¸¦ Ÿ°ÙÀ¸·Î »ï¾Æ ¸ÕÀú knockdownÀ» ÁøÇàÇØ º¸¾Ò½À´Ï´Ù. ³î¶ø°Ôµµ dendriteÀÇ mitochondria ¸ð¾çÀº º¯È­°¡ ¾ø¾úÁö¸¸ axonal mitochondria°¡ ±æ¾îÁø °ÍÀ» °üÂûÇÏ¿´½À´Ï´Ù±×¸² 2A-B)[7]. ÀÌ·¯ÇÑ ¸ð¾ç º¯È­°¡ ¾î¶°ÇÑ °á°ú¸¦ °¡Á®¿À´ÂÁö¸¦ ÀÌÇØÇÏ¸é ¿Ö mitochondria°¡ axon ƯÈ÷ presynapse (Àü½Ã³À½º)¿¡¼­ ÀÛ°Ô À¯Áö°¡ µÇ¾î¾ßÇÏ´ÂÁö¸¦ ÀÌÇØÇÒ ¼ö ÀÖÀ» °ÍÀ̶ó »ý°¢ÇØ ´ÙÀ½ ¿¬±¸¸¦ ÁøÇàÇÏ¿´½À´Ï´Ù.


Axonal presynapse (Àü½Ã³À½º)¿¡¼­ mitochondriaÀÇ ¿ªÇÒ ¿¬±¸ (PLoS Biology, 2016; Nature Communications, 2018)

±âÁ¸ ¿¬±¸µé¿¡¼­ ³ú¿¡ Á¸ÀçÇÏ´Â ¸¹Àº ½Å°æ¼¼Æ÷µéÀÌ ÇϳªÀÇ axon¿¡ ¿©·¯ °³ÀÇ presynaptic release site¸¦ °®°í ÀÖ´Â °ÍÀÌ ¾Ë·ÁÁ³À¸¸ç, Èï¹Ì·Ó°Ôµµ 50% ÀÌÇÏÀÇ presynaptic site¸¸ mitochondria¿Í °ãÃÄÀÖ´Â °ÍÀÌ °üÂûµÆ½À´Ï´Ù. Presynapse¿¡¼­ action potential¿¡ µû¸¥ Ca2+ influx°¡ presynaptic vesicle exocytosis¸¦ À¯µµÇÏ°Ô µÇ´Âµ¥ À§¿Í °°Àº mitochondriaÀÇ Á¸Àç À¯¹«°¡ Ca2+ uptake¸¦ ÅëÇØ release Â÷À̸¦ ÁÙ ¼ö ÀÖ´ÂÁö´Â Àǹ®À̾ú½À´Ï´Ù. °¢ presynapseÀÇ release¸¦ À̹Ì¡ ±â¼úÀ» ÅëÇØ »ìÆ캸¾ÒÀ» ¶§, ³î¶ø°Ôµµ mitochondria°¡ ¾ø´Â °÷¿¡¼­ presynaptic Ca2+°ú release°¡ ´õ ¿Ã¶ó°¡ ÀÖÀ½ÀÌ º¸¿©Á³½À´Ï´Ù[8].
Mff knockdown neuron¿¡¼­´Â ±æ¾îÁø presynaptic mitochondria°¡ Ca2+ÀÇ over-uptake¸¦ À¯µµÇÏ°í ÀÌ·Î ÀÎÇØ presynaptic release°¡ ÁÙ¾îµå´Â °ÍÀÌ °üÂûµÇ¾ú½À´Ï´Ù(±×¸² 2C). ¶ÇÇÑ synaptic activity¿¡ Å« ¿µÇâÀ» ¹Þ´Â axon branchingÀÌ ÇöÀúÈ÷ ÁÙ¾îµé°Ô ÇÏ´Â °á°ú¸¦ °¡Á®¿Ô½À´Ï´Ù. µû¶ó¼­ presynaptic mitochondria¿¡ ÀÇÇÑ Ca2+ Á¶ÀýÀÌ synaptic release property ¹× axon branching development¿¡ ±²ÀåÈ÷ Áß¿äÇϸç, presynapseÀÇ mitochondrial size¸¦ ÀÛ°Ô À¯ÁöÇÏ´Â °ÍÀÌ Á¤»óÀûÀÎ presynaptic function¿¡ ÇʼöÀûÀÓÀ» ¾Ë ¼ö ÀÖ¾ú½À´Ï´Ù(±×¸² 2D)[7].

±×¸² 2. MFF¿¡ ÀÇÇÑ axonal mitochondria ¸ð¾ç ¹× ±â´É Á¶Àý. (A) Axon¿¡¼­´Â mitochondrial fissionÀÌ dendrite¿¡¼­´Â mitochondrial fusionÀÌ dominant ÇÏ´Ù´Â °¡¼³À» ¼¼¿ì°í mitochondria fissionÀ» Á¶ÀýÇÏ´Â MFF¸¦ ÅëÇØ ±â´ÉÀ» »ìÆ캽. (B-D) Mff-deficient neuron¿¡¼­ axonal mitochondriaÀÇ elongationÀÌ ÀϾ°í ÀÌ·Î ÀÎÇØ presynaptic Ca2+ÀÌ over-uptakeµÇ¾î neurotransmitter release°¡ ÁÙ¾îµé¾î axon branching defect°¡ ³ªÅ¸³².
±×¸² 2. MFF¿¡ ÀÇÇÑ axonal mitochondria ¸ð¾ç ¹× ±â´É Á¶Àý. (A) Axon¿¡¼­´Â mitochondrial fissionÀÌ dendrite¿¡¼­´Â mitochondrial fusionÀÌ dominant ÇÏ´Ù´Â °¡¼³À» ¼¼¿ì°í mitochondria fissionÀ» Á¶ÀýÇÏ´Â MFF¸¦ ÅëÇØ ±â´ÉÀ» »ìÆ캽. (B-D) Mff-deficient neuron¿¡¼­ axonal mitochondriaÀÇ elongationÀÌ ÀϾ°í ÀÌ·Î ÀÎÇØ presynaptic Ca2+ÀÌ over-uptakeµÇ¾î neurotransmitter release°¡ ÁÙ¾îµé¾î axon branching defect°¡ ³ªÅ¸³².

Dendrite (¼ö»óµ¹±â)¿¡¼­ ER°ú mitochondriaÀÇ ¿ªÇÒ ±Ô¸í (Science, 2017)

¾Õ¼­ ¾ð±ÞÇÑ ¹Ù¿Í °°ÀÌ ºñ½Å°æ¼¼Æ÷¿¡¼­ mitochondria-ER contactÀÇ ´Ù¾çÇÑ ±â´ÉµéÀÌ º¸°í µÇ¾î¿Ô½À´Ï´Ù. Mitochondria¿Í ERÀº ¸ðµÎ Ca2+À» Èí¼öÇÏ°í ¹æÃâÇÏ´Â ±â´ÉÀ» Çϴµ¥ mitochondrial calcium uniporter (MCU)ÀÇ °æ¿ì Ca2+ affinity°¡ ³·¾Æ ER¿¡¼­ ¹æÃâµÈ Ca2+ÀÌ ER-mitochondria ¿¬°áÀ» ÅëÇØ Àü´ÞÀÌ µÉ ¶§ ä³ÎÀÌ ¿­¸®¸é¼­ mitochondria·ÎÀÇ Èí¼ö°¡ ÀÌ·ç¾îÁú ¼ö ÀÖ´Ù´Â º¸°íµéÀÌ ÀÖ¾ú½À´Ï´Ù[9, 10]. ÇÏÁö¸¸ ÀÌ°ÍÀÇ Á÷Á¢ÀûÀÎ °üÂûÀº ÃÖ±Ù¿¡ µé¾î¼­¾ß »õ·Î¿î sensor °³¹ß·Î °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. »ì¾ÆÀÖ´Â ¼¼Æ÷³»ÀÇ Ca2+ dynamics¸¦ º¸±â À§ÇØ ´Ù¾çÇÑ chemical ȤÀº genetic Ca2+ sensorµéÀÌ °³¹ßµÇ¾ú°í, ƯÈ÷ ÀûÀº ¾çÀÇ Ca2+¿¡ ´ëÇÑ ¹Î°¨µµ(sensitivity)¸¦ ¿Ã¸®±â À§ÇØ À̵éÀÇ Ca2+ affinity´Â ³ô¾ÆÁö´Â ¹æÇâÀ¸·Î ÁøÇàµÇ¾úÁö¸¸ ERÀÇ resting Ca2+ ³óµµÀÇ °æ¿ì 1mM¿¡ À̸¦ Á¤µµ·Î ³ô¾Æ ±âÁ¸ÀÇ Ca2+ sensor·Î ÃøÁ¤Çϱ⿡´Â saturationÀ¸·Î ÀÎÇÑ ÇÑ°è°¡ ÀÖ¾ú½À´Ï´Ù. µû¶ó¼­ ÃÖ±Ù ERÀÇ Ca2+ dynamics¸¦ ÃøÁ¤Çϱâ À§ÇØ affinity°¡ ³·Àº ER-targeted genetically-encoded Ca2+ sensorµéÀÌ °³¹ßµÇ¾ú½À´Ï´Ù[11, 12].
½Å°æ¼¼Æ÷¿¡¼­ Ca2+Àº ½Ã³À½ºÀÇ ±â´É Á¶Àý, Àü»ç Á¶Àý µî ´Ù¾çÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖÀ¸¸ç, ER¿¡¼­ÀÇ Ca2+ ¹æÃâÀÌ ½Ã³À½º Àڱؽÿ¡ ÀϾ´Ù´Â º¸°í°¡ ÀÖ¾úÀ¸³ª mitochondria¿ÍÀÇ »óÈ£ÀÛ¿ë¿¡ ´ëÇؼ­´Â ¾Ë·ÁÁ® ÀÖÁö ¾Ê¾Ò½À´Ï´Ù[13-17]. ÀúÈñ´Â ÃÖ±Ù ¿¬±¸¿¡¼­ óÀ½À¸·Î ½Å°æ¼¼Æ÷¿¡¼­ ER°ú mitochondriaÀÇ Ca2+ dynamics¸¦ »õ·ÎÀÌ °³¹ßµÈ ´Ù¸¥ ÆÄÀåÀÇ Çü±¤À» ³»´Â genetically-encoded Ca2+ sensor (G-CEPIA1er for green, mito-RCaMP1h for red)¸¦ ÅëÇØ µ¿½Ã¿¡ ÃøÁ¤ÇÏ¿´½À´Ï´Ù. Èï¹Ì·Ó°Ôµµ ´Ù¸¥ ¼¼Æ÷¿Í °°ÀÌ ½Å°æ¼¼Æ÷ÀÇ dendrite (¼ö»óµ¹±â)¿¡¼­ mitochondriaÀÇ Ca2+ Èí¼ö°¡ ER¿¡¼­ÀÇ Ca2+ ¹æÃâ¿¡ ÀÇÁ¸ÇÑ´Ù´Â °ÍÀ» ¹ß°ßÇÏ¿´°í, ER-mitochondria contact¿¡ °ü¿©ÇÏ´Â PDZD8À̶ó´Â ´Ü¹éÁúµµ »õ·Î ã¾Æ, PDZD8 knockdown Á¶°Ç¿¡¼­´Â ÀÌ·¯ÇÑ Ca2+ À̵¿ÀÌ ÀúÇصǾî ÀÖÀ½À» °üÂûÇÏ¿´½À´Ï´Ù(±×¸² 3). ÀÌ´Â ½Å°æ¼¼Æ÷ÀÇ ER¿¡¼­ mitochondria·ÎÀÇ Ca2+À̵¿ ¹× °ü·Ã ´Ü¹éÁúÀ» óÀ½À¸·Î º¸¿©ÁØ ¿¬±¸¶ó ÇÒ ¼ö ÀÖ°Ú½À´Ï´Ù. ÀÌ¿¡´õÇØ cytosolic Ca2+ Áõ°¡°¡ º¸¿©Á® ER¿¡¼­ ¹æÃâµÈ Ca2+ÀÌ mitochondria·Î °¡Áö ¸øÇÒ °æ¿ì cytosol·Î »õ¾î³ª°¨À» ¾Ë ¼ö ÀÖ¾ú½À´Ï´Ù±×¸² 3)[18]. ÀÌ ¿¬±¸´Â ÇâÈÄ dendrite¿¡¼­ Ca2+ Á¶Àý ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇϴµ¥ ER-mitochondria contactÀÌ ¹Ýµå½Ã °í·ÁµÇ¾î¾ß ÇÔÀ» Á¦½ÃÇØ ÁÖ°í ÀÖ½À´Ï´Ù.

±×¸² 3. ER-mitochondria contactÀ» ÅëÇÑ Ca2+ transfer ¹× PDZD8¿¡ ÀÇÇÑ ER-mitochondria contact ¿µÇâ. PDZD8-deficient neuron¿¡¼­ ER¿¡¼­ mitochondria·Î Ca2+ transfer°¡ ÀúÇصǰí, cytosolic Ca2+ÀÌ Áõ°¡ÇÏ°Ô µÊ.
±×¸² 3. ER-mitochondria contactÀ» ÅëÇÑ Ca2+ transfer ¹× PDZD8¿¡ ÀÇÇÑ ER-mitochondria contact ¿µÇâ. PDZD8-deficient neuron¿¡¼­ ER¿¡¼­ mitochondria·Î Ca2+ transfer°¡ ÀúÇصǰí, cytosolic Ca2+ÀÌ Áõ°¡ÇÏ°Ô µÊ.

ÀÌ·¯ÇÑ ¿¬±¸µéÀ» ¹ÙÅÁÀ¸·Î ÀúÈñ ½ÇÇè½Ç¿¡¼­´Â axon°ú dendrite¿¡¼­ ER°ú mitochondriaÀÇ »óÈ£ÀÛ¿ë¿¡ ÀÇÇÑ ½Ã³À½º °¡¼Ò¼º ¿µÇâ ¹× ½Å°æȸ·Î¿¡ µû¸¥ ¼Ò±â°üÀÇ ¿µÇâ¿¡ ´ëÇؼ­ ´Ù¾çÇÑ ºÐÀÚ/¼¼Æ÷ »ý¹°ÇÐÀûÀÎ ±â¼úÀ» ÅëÇØ in vitro¿Í in vivo¿¡¼­ ¿¬±¸¸¦ ÁøÇàÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬±¸µéÀº ±³°ú¼­¿¡ »õ·Î¿î ³»¿ëÀ» ´õÇØÁÙ °ÍÀ̶ó »ý°¢Çϸç, ÇâÈÄ ÅðÇ༺ ½Å°æÁúȯÀÇ º´¸®Àû Ư¼ºÀ» ¹àÈ÷´Âµ¥ ÇÙ½É ¿ä¼Ò·Î Àû¿ëµÉ °ÍÀÔ´Ï´Ù.

¿¬±¸½Ç ´Üü »çÁø ¹× ±¸¼º¿ø À̸§

¿¬±¸½Ç ´Üü »çÁø ¹× ±¸¼º¿ø À̸§
  • ±Ç¼®±Ô (¼±ÀÓ¿¬±¸¿ø) Á¤Ã¢¿í (¹Ú»çÈÄ ¿¬±¸¿ø) ±è¼ö¿¬ (ÀÎÅÏ ¿¬±¸¿ø) Á¤Çö¼ö (¼®»ç°úÁ¤)

Âü°í¹®Çå

  • [1]

    Kornmann, B. and P. Walter, ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci, 2010. 123(Pt 9): p. 1389-93.

  • [2]

    Rowland, A.A. and G.K. Voeltz, Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol, 2012. 13(10): p. 607-25.

  • [3]

    Kornmann, B., The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol, 2013. 25(4): p. 443-8.

  • [4]

    Zhang, L., et al., Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Sci Rep, 2016. 6: p. 18725.

  • [5]

    Song, W., et al., Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med, 2011. 17(3): p. 377-82.

  • [6]

    Wang, X., et al., LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 2012. 21(9): p. 1931-44.

  • [7]

    Lewis, T.L., Jr., et al., MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun, 2018. 9(1): p. 5008.

  • [8]

    Kwon, S.K., et al., LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons. PLoS Biol, 2016. 14(7): p. e1002516.

  • [9]

    Rizzuto, R., et al., Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998. 280(5370): p. 1763-6.

  • [10]

    Csordas, G., A.P. Thomas, and G. Hajnoczky, Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. iBO J, 1999. 18(1): p. 96-108.

  • [11]

    Suzuki, J., et al., Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun, 2014. 5: p. 4153.

  • [12]

    de Juan-Sanz, J., et al., Axonal Endoplasmic Reticulum Ca2+ Content Controls Release Probability in CNS Nerve Terminals. Neuron, 2017. 93(4): p. 867-881 e6.

  • [13]

    Yeckel, M.F., A. Kapur, and D. Johnston, Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci, 1999. 2(7): p. 625-33.

  • [14]

    iptage, N., T.V. Bliss, and A. Fine, Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron, 1999. 22(1): p. 115-24.

  • [15]

    Nishiyama, M., et al., Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 2000. 408(6812): p. 584-8.

  • [16]

    Finch, E.A. and G.J. Augustine, Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature, 1998. 396(6713): p. 753-6.

  • [17]

    Lee, K.F., et al., Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development. Neuron, 2016. 89(4): p. 784-99.

  • [18]

    Hirabayashi, Y., et al., ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science, 2017. 358(6363): p. 623-630.

ÀúÀÚ¾à·Â

  • 2001-2005

    KAIST, Çлç

  • 2005-2010

    KAIST, ¹Ú»ç

  • 2011-2013

    The Scripps Research Institute, La Jolla, postdoc

  • 2013-2017

    Columbia University, postdoc

  • 2018-ÇöÀç

    KIST ³ú°úÇבּ¸¼Ò ±â´ÉÄ¿³ØÅä¹Í½º¿¬±¸´Ü, ¼±ÀÓ¿¬±¸¿ø