ÇÐȸ¼Ò°³ ÇÐȸÁÖ°ü½Ã»ó

6. ¸¶Å©·ÎÁ¨ °úÇÐÀÚ»ó (Macrogen Scientist Award)

 
Á¦20ȸ ¼ö»óÀÚ (2023³â) Á¦19ȸ ¼ö»óÀÚ (2022³â) Á¦18ȸ ¼ö»óÀÚ (2021³â) Á¦17ȸ ¼ö»óÀÚ (2020³â)
Á¦16ȸ ¼ö»óÀÚ (2019³â) Á¦15ȸ ¼ö»óÀÚ (2018³â) Á¦14ȸ ¼ö»óÀÚ (2017³â) Á¦13ȸ ¼ö»óÀÚ (2016³â)
Á¦12ȸ ¼ö»óÀÚ (2015³â) Á¦11ȸ ¼ö»óÀÚ (2014³â) Á¦10ȸ ¼ö»óÀÚ (2013³â) Á¦9ȸ ¼ö»óÀÚ (2012³â)
Á¦8ȸ ¼ö»óÀÚ (2011³â) Á¦7ȸ ¼ö»óÀÚ (2010³â) Á¦6ȸ ¼ö»óÀÚ (2009³â) Á¦5ȸ ¼ö»óÀÚ (2008³â)
Á¦4ȸ ¼ö»óÀÚ (2007³â) Á¦3ȸ ¼ö»óÀÚ (2006³â) Á¦2ȸ ¼ö»óÀÚ (2005³â) Á¦1ȸ ¼ö»óÀÚ (2004³â)
¼ÛÀçȯ (¿¬¼¼´ëÇб³ »ý¸í½Ã½ºÅÛ´ëÇÐ »ýÈ­Çаú)

¼ÛÀçȯ ±³¼ö´Â ºÐÀÚ¼¼Æ÷»ý¹°ÇÐÀ» ¼±µµÇÏ°í ÀÖ´Â °úÇÐÀڷμ­ ¼¼Æ÷»ç¸ê°ú ³ëÈ­°úÁ¤À» ºÐÀÚ¼öÁØ¿¡¼­ ÀÌÇØÇÏ°í, À̸¦ ÀÌ¿ëÇÏ¿© ¾Ï¼¼Æ÷¸¦ È¿°úÀûÀ¸·Î Ä¡·á ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¿¬±¸ÇÏ´Â µ¥¿¡ °øÇåÇØ ¿Ô´Ù. ¶ÇÇÑ ¼ÛÀçȯ ±³¼ö´Â ¿¬¼¼´ëÇб³ »ýÈ­Çаú ¾Ï ¹ß»ý ¹× ¼¼Æ÷»ç¸ê ±âÀÛ ¿¬±¸½ÇÀ» ¿î¿µÇϸç À¯ºñÄûƾ µî¿¡ ÀÇÇÑ ´Ü¹éÁúÀÇ º¯ÇüÀÌ ´Ù¾çÇÑ ½ºÆ®·¹½º ȯ°æ¿¡¼­ ¾Ï¼¼Æ÷ÀÇ »ç¸ê°ú ³ëÈ­ ¹× ´ë»çÁúȯ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿¬±¸¸¦ ºÐÀÚ»ý¹°ÇÐ, »ýÈ­ÇÐ, ¼¼Æ÷ÇÐ ¹× ¸¶¿ì½º À¯ÀüÇÐ ¿¬±¸ ±â¹ýÀ» ÀÌ¿ëÇÏ¿© È°¹ßÈ÷ ¼öÇàÇÏ°í ÀÖ´Ù. ƯÈ÷, ¼¼Æ÷»ç¸ê, ³ëÈ­ ¹× ´ë»ç°úÁ¤ÀÌ ¼­·Î ¹ÐÁ¢ÇÑ °ü°è¸¦ ÀÌ·ç°í ÀÖÀ¸¸ç, À̵éÀÇ ½ÅÈ£Àü´Þü°èÀÇ ÀÌ»óÀÌ ¾î
¶»°Ô ¾Ï, ¸é¿ªÁúȯ, ´ë»çÁúȯÀ» À¯µµ ÇÏ´ÂÁö ¿ø¸®¸¦ ±Ô¸íÇϴµ¥ ¿¬±¸¿ª·®À» ÁýÁßÇÏ°í ÀÖ´Ù.
À¯ºñÄûƾ(Ubiquitin)Àº 76°³ÀÇ ¾Æ¹Ì³ë»êÀ¸·Î ±¸¼ºµÈ ÀÛÀº ´Ü¹éÁú·Î¼­ ´Ù¾çÇÑ ´Ü¹éÁú°ú °øÀ¯°áÇÕÇÏ¿© ŸÄÏ ´Ü¹éÁúÀÇ ºÐÇظ¦ À¯µµÇϰųª ±â´ÉÀ» Á¶ÀýÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù. ¼ÛÀçȯ ±³¼ö ¿¬±¸ÆÀÀº ¸¶ÄÚ¸° 1(Makorin 1; MKRN1)À̶ó´Â À¯ºñÄûƾÁ¢ÇմܹéÁú(Ubiquitin ligase)ÀÌ ¾Ï¾ïÁ¦À¯ÀüÀÚ(Tumor suppressor) p53 ¹× p14ARF ´Ü¹éÁúÀÇ À¯ºñÄûƾȭ ¹× ºÐÇظ¦ À¯µµÇÔÀ¸·Î½á ¾Ï¹ß»ý¿¡ ±â¿©ÇÑ´Ù´Â »ç½ÇÀ» ¹ß°ßÇÏ°í °ü·Ã ¿¬±¸¼º°ú¸¦ 2009³â ¼¼°èÀû ±ÇÀ§ÀÇ ºÐÀÚ»ý¹°ÇÐ ºÐ¾ß ÇмúÁöÀÎ '¿¥º¸Àú³Î(The EMBO Journal)'°ú 2012³â ¾Ï ºÐ¾ß ÃÖ»óÀÇ Àü¹®ÁöÀÎ 'JNCI(The Journal of National Cancer Institute)'¿¡ ¹ßÇ¥ÇÏ¿´´Ù. ƯÈ÷, ¼ÛÀçȯ ±³¼ö ¿¬±¸ÆÀÀº ¸¶ÄÚ¸°ÀÌ ¼¼Æ÷ÀÚ±â»ç¸ê(Apoptosis) ¹× ¼¼Æ÷ÀڱⱫ»ç(Necroptosis)ÀÇ ÇÙ½É ´Ü¹éÁúÀÎ Æĵå(FADD) ´Ü¹éÁúÀ» Á¶ÀýÇÔÀ¸·Î½á À¯¹æ¾ÏÀÇ Ç×¾ÏÁ¦ ÀúÇ×¼º¿¡ ±â¿©ÇÑ´Ù´Â »ç½ÇÀ» ¹ß°ßÇÏ°í 2012³â ¼¼°è ÃÖ°í °úÇÐÀü¹®Áö '³×ÀÌó'ÀÇ ¿Â¶óÀÎ ÀÚ¸ÅÁöÀÎ '³×ÀÌÃÄ Ä¿¹Â´ÏÄÉÀ̼ÇÁî(Nature Communications)'¿¡ ¹ßÇ¥Çϱ⵵ ÇÏ¿´´Ù. ¶ÇÇÑ, ¸¶ÄÚ¸°ÀÌ Áö¹æ¼¼Æ÷Àü»çÀÎÀÚ(PPARγ)ÀÇ ºÐÇظ¦ ÅëÇØ Áö¹æ¼¼Æ÷ÀÇ ºÐÈ­¸¦ Á¶ÀýÇÑ´Ù´Â »ç½ÇÀ» 2013³â ¼¼Æ÷»ý¹°ÇÐ ºÐ¾ßÀÇ ¼¼°èÀû ÇмúÁöÀÎ '¼¼Æ÷»ç¸ê ¹× ºÐÈ­(Cell Death and Differentiation)'¿¡ ¹ßÇ¥ÇÏ¿© ¾Ï±âÀÛ°ú ´ë»çÀÛ¿ëÀÇ »ó°ü¼ºÀ» ÀÔÁõÇÏ¿´´Ù. ÇÑÆí ¼ÛÀçȯ ±³¼ö ¿¬±¸ÆÀÀº 2012³â Tip60¶ó´Â ¾Æ¼¼Æ¿Àü´ÞÈ¿¼Ò(Acetyltransferase)°¡ ¼¼Æ÷ÁÖ±âÀÇ ÇÙ½É ´Ü¹éÁú p21ÀÇ ¾Æ¼¼Æ¿È­¸¦ ¸Å°³ÇÔÀ¸·Î½á ¾Ï¼¼Æ÷ÀÇ Áõ½Ä¿¡ °ü¿©ÇÑ´Ù´Â »ç½ÇÀ» ¹ß°ßÇÏ¿© ¼¼Æ÷»ý¹°ÇÐ ºÐ¾ßÀÇ ¼¼°èÀû ÇмúÁöÀÎ '¼¼Æ÷»ç¸ê ¹× ºÐÈ­(Cell Death and Differentiation)'¿¡ ¹ßÇ¥ÇÏ¿´´Ù. ÀÌ·¯ÇÑ ¿¬±¸µéÀ» ÅëÇØ, ¼ÛÀçȯ ±³¼ö ¿¬±¸ÆÀÀº ´Ü¹éÁúº¯Çü(Protein modification)ÀÌ ´Ù¾çÇÑ ¼¼Æ÷¼öÁØÀÇ º¯È­(»ç¸ê, ³ëÈ­, Áõ½Ä ¹× ´ë»ç)¸¦ ÅëÇØ ¾Ï°ú ´ë»çÁúȯÀ» À¯µµÇÏ´Â ºÐÀÚ±âÀÛÀ» ¹àÇô³¿À¸·Î½á À̸¦ ÅëÇÑ ´Ù¾çÇÑ ÁúȯÀÇ ¿¹¹æ ¹× Ä¡·á¹ýÀ» Ž»öÇÏ´Â ¿¬±¸¸¦ ÁøÇàÇÏ°í ÀÖ´Ù.
¼ÛÀçȯ ±³¼ö´Â ¹Ì±¹ Northwestern ´ëÇÐ Richard I. Morimoto ±³¼ö ¹Ø¿¡¼­ Molecular ChaperoneÀÇ »ý¹°ÇÐÀû ±â´É¿¡ ´ëÇÑ ¿¬±¸·Î ¹Ú»çÇÐÀ§¸¦ ¼ö¿©ÇÏ¿´À¸¸ç, ±× ÈÄ °°Àº ¿¬±¸½Ç¿¡¼­ ¹Ú»ç ÈÄ ¿¬±¸ÀÚ°úÁ¤À» °ÅÃÄ 2002³âºÎÅÍ ¼º±Õ°ü´ëÇб³¿¡¼­ ÀçÁ÷ÇÏ¿´°í 2010³âºÎÅÍ ¿¬¼¼´ëÇб³ »ýÈ­Çаú ±³¼ö·Î ÀçÁ÷ ÁßÀÌ´Ù.
.
Professor Jaewhan Song studied the mechanism of molecular chaperones during his Ph.D. years at Northwestern University. Following a postdoctoral fellowship at the same university with Prof. Richard I. Morimoto, he moved in 2002 to the Department of Bioengineering at Sungkyunkwan University as an assistant professor. Since 2010 he holds position of professor in Biochemistry Department, Yonsei University. The main theme of Prof. Song's laboratory is to understand tumorigenesis through studies of cellular senescence and death. Under stressed conditions which can be overcome by cells, protective mechanisms of cell cycle arrest and simultaneous DNA repair are initiated to prevent aberrant DNA eruption within cells. When the environment inside and outside of affected cells becomes too lethal to the point of irreparability, cells turn on suicidal death pathways called the intrinsic or extrinsic apoptosis. These processes remove the risk of normal cells to develop into abnormal tumors resistant to cell death as well as senescence. During past years his lab worked on the function of tumor suppressors and oncogenes that directly or indirectly involved with intrinsic or extrinsic apoptosis. In particular, the mechanisms of how they are regulated in the posttranslational status were the major questions. Using animal and cellular models, his laboratory identified for the first time the E3 ligases of FADD, a major adaptor protein prompting extrinsic apoptosis, and how their interactions could be manipulated to suppress breast cancer development. Working on p14ARF, a major tumor suppressor inducing senescence, his research showed that its regulator E3 ligase MKRN1 could induce gastric tumor cancer by suppressing p14ARF function. Furthermore, by identifying the regulatory mechanism of PPAR-γ by the same E3 ligase, MKRN1, a novel link between tumorigenesis and adipogenic process regulated by posttranslational modifications has been proposed. Currently, members of his laboratory are concentrating on the mechanisms of alternative
death pathway, called necroptosis, and

Representative papers
- Suppression of PPARγthrough MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. (2014). Cell Death Differ. 21, 594-603.
- Stabilization of p21 (Cip1/WAF1) following Tip60-dependent acetylation is required for p21-mediated DNA damage response. (2013). Cell Death Differ. 20, 620-629.
- Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. (2012). J. Natl. Cancer Inst. 104, 1660-1672.
- Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. (2012). Nat. Commun. 3, 978.
- Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. (2009). EMBO J. 28, 2100-2013.

   

Àüü¸Þ´º

´Ý±â

Ä«Å×°í¸®º° Àüü ¸Þ´º¸¦ È®ÀÎÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.